1
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
2
|
Khattab H, Gawish AA, Gomaa S, Hamdy A, El-Hoshoudy AN. Assessment of modified chitosan composite in acidic reservoirs through pilot and field-scale simulation studies. Sci Rep 2024; 14:10634. [PMID: 38724544 PMCID: PMC11082220 DOI: 10.1038/s41598-024-60559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Chemical flooding through biopolymers acquires higher attention, especially in acidic reservoirs. This research focuses on the application of biopolymers in chemical flooding for enhanced oil recovery in acidic reservoirs, with a particular emphasis on modified chitosan. The modification process involved combining chitosan with vinyl/silane monomers via emulsion polymerization, followed by an assessment of its rheological behavior under simulated reservoir conditions, including salinity, temperature, pressure, and medium pH. Laboratory-scale flooding experiments were carried out using both the original and modified chitosan at conditions of 2200 psi, 135,000 ppm salinity, and 196° temperature. The study evaluated the impact of pressure on the rheological properties of both chitosan forms, finding that the modified composite was better suited to acidic environments, showing enhanced resistance to pressure effects with a significant increase in viscosity and an 11% improvement in oil recovery over the 5% achieved with the unmodified chitosan. Advanced modeling and simulation techniques, particularly using the tNavigator Simulator on the Bahariya formations in the Western Desert, were employed to further understand the polymer solution dynamics in reservoir contexts and to predict key petroleum engineering metrics. The simulation results underscored the effectiveness of the chitosan composite in increasing oil recovery rates, with the composite outperforming both its native counterpart and traditional water flooding, achieving a recovery factor of 48%, compared to 39% and 37% for native chitosan and water flooding, thereby demonstrating the potential benefits of chitosan composites in enhancing oil recovery operations.
Collapse
Affiliation(s)
- Hamid Khattab
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Ahmed A Gawish
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Sayed Gomaa
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
- Department of Petroleum Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt
| | - Abdelnaser Hamdy
- Reservoir Engineering Department, Khalda Petroleum Company, Cairo, Egypt
| | - A N El-Hoshoudy
- PVT lab, Production Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
- PVT service center, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| |
Collapse
|
3
|
Wang M, Yang S, Sun N, Zhu T, Lian Z, Dai S, Xu J, Tong X, Wang H, Jiang L. Soybean isolate protein complexes with different concentrations of inulin by ultrasound treatment: Structural and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 105:106864. [PMID: 38581796 PMCID: PMC11004718 DOI: 10.1016/j.ultsonch.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 μmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Yan X, Li H, Wang X, Hu Z, Li J, Zheng H, Wang J, Zhen Z. From amino acid analysis to improved gel properties: The role of dl-valine in Landaise goose myofibrillar protein. Food Chem X 2024; 21:101123. [PMID: 38292675 PMCID: PMC10827391 DOI: 10.1016/j.fochx.2024.101123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The impact of exogenous limiting amino acids on protein gel formation was investigated to enhance the gelation properties of Landaise goose myofibrillar protein (MP). Amino acid composition and gel properties were analyzed, and homologous protein modeling and molecular docking techniques were used to simulate binding sites. Valine was identified as the first limiting amino acid. The addition of 0.075 % dl-valine proved optimal to enhance the gel strength (59.5 g) and water retention (76.76 %) of MP gels. Hydrophobic interactions and disulfide bonds were found to be the main forces maintaining conformational stability of the MP-dl-valine gels. The propyl group of dl-valine can form hydrophobic interactions with protein, contributing to stable complexes. DL valine could also strengthen chemical bonds and secondary structure, convert free water to immobile water, and improve the microstructure of the gel. Therefore, valine can be utilized as a nutritional and gel enhancer in Landaise goose meat products.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Hong Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiujuan Wang
- Huoqiu County Animal Health Supervision Institute, Lu’an 237400, China
| | - Zhonghai Hu
- Lu'an Longxiang Gourmet Poultry Co., Ltd., Lu’an 237400, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jie Wang
- WND Sci-Tech Development Service Center, Wuxi 214000, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Chuzhou 239000, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| |
Collapse
|
5
|
Krstonošić V, Pavlović N, Nikolić I, Milutinov J, Ćirin D. Physicochemical properties and stability of oil-in-water emulsions stabilized by soy protein isolate and xanthan gum. Int J Biol Macromol 2024; 260:129610. [PMID: 38246463 DOI: 10.1016/j.ijbiomac.2024.129610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The aim of this work was to determine rheological and disperse characteristics and stability of oil-in-water emulsions stabilized by soy protein isolate (SPI) and xanthan gum (XG), as natural components. The effects of their combination on emulsion stabilization have not been investigated yet. The existence of interactions between the two macromolecules were indicated by the influence of XG on SPI surface hydrophobicity and surface tension values. Increase in SPI concentration from 1 to 3 % shift of distribution curves towards smaller particle size, while the opposite effects of further increase of SPI was obtained. The emulsions stabilized by SPI showed shear-thinning flow behavior, which changed to thixotropic at 5 % of SPI concentration. The presence of XG in emulsions at low concentrations did not affect the size distribution of the droplets, while at 0.1 % of XG Sauter mean diameter value raised and distribution curves were shifted towards a higher particle size. The presence of XG at higher concentration resulted in thixotropic flow behavior of emulsions. Also, increase in XG concentration led to the increase in consistency index and extent of non-Newtonian behavior of emulsions and enhanced the influence of the elastic modulus and creaming stability of the systems.
Collapse
Affiliation(s)
- Veljko Krstonošić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Nebojša Pavlović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Ivana Nikolić
- University of Novi Sad, Faculty of Technology, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jovana Milutinov
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Dejan Ćirin
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| |
Collapse
|
6
|
Yang H, Wang S, Yang L, Liu H. Preparations, application of polysaccharide-protein nanoparticles and their assembly at the oil-water interface. Food Sci Biotechnol 2024; 33:13-22. [PMID: 38186629 PMCID: PMC10767157 DOI: 10.1007/s10068-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 01/09/2024] Open
Abstract
With the development of nanotechnology, nanoparticles have played an important role in pharmaceuticals, foods and materials, in particular, protein/polysaccharide based composite nanoparticles have received attention from researchers for safety and green production. This paper summarized in detail the preparation methods, applications of protein/polysaccharide nanoparticles (PPNPs) in recent years, especially the mechanism of stabilizing the oil-water interface. Currently, the polysaccharides applied are more traditional, such as chitosan, pectin and carboxymethyl cellulose, so there is still a lot of room for the development of raw materials that can be used to prepare PPNPs. Based on this, we also proposed three promising polysaccharides: seaweed polysaccharide, lycium barbarum polysaccharide and lactobacillus exopolysaccharides, describing their characteristics as well as their application prospects, this article can serve as a reference for interested researchers.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - He Liu
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| |
Collapse
|
7
|
Efficient binding paradigm of protein and polysaccharide: Preparation of isolated soy protein-chitosan quaternary ammonium salt complex system and exploration of its emulsification potential. Food Chem 2023; 407:135111. [PMID: 36527948 DOI: 10.1016/j.foodchem.2022.135111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Soy protein isolate (SPI) has good emulsifying ability, but is greatly affected by the environment. The addition of polysaccharides either increases or decreases the stability of SPI. We report and prepared for the first time SPI/HACC complexes with different polysaccharide contents (SPI/HACC ratios are 1:1, 2:1 and 5:1). The binding properties, microstructure and emulsifying properties of the SPI/HACC complexes were determined and analyzed. The results showed that the interaction them is mainly through hydrogen bonding, electrostatic interaction, hydrophobic interaction and steric hindrance effect. The combination of SPI and HACC overcomes their respective limitations and the microstructure is more flat and smooth. It was also found that the emulsifying ability and concentration of SPI showed a certain correlation and the addition of HACC significantly improved the emulsifying ability and storage stability of SPI. This study shows that the prepared SPI/HACC complex has great potential for application in the food industry.
Collapse
|
8
|
Yin Q, Wu L, Zhang X, Zheng Z, Luo S, Zhong X, Zhao Y. Preparation of high complex concentration emulsion stabilized by soy protein/dextran sulfate composite particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185886 DOI: 10.1002/jsfa.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) could be used as an emulsifier to stabilize emulsions, while SPI is unstable under low acidic conditions. The stable composite particles of SPI and dextran sulfate (DS) could be formed by the electrostatic interaction at the pH was 3.5. And the SPI/DS composite particles were used to prepare the high complex concentration emulsion. The stabilization properties of high complex concentration emulsion were investigated. RESULTS Compared to uncompounded SPI, the particle size of SPI/DS composite particles was smaller at 1.52 μm, and the absolute value of the potential increased to 19.9 mV when the mass ratio of SPI to DS was 1:1 and the pH was 3.5. With the DS ratio increased, the solubility of the composite particles increased to 14.44 times of the untreated protein at pH 3.5, while the surface hydrophobicity decreased. Electrostatic interactions and hydrogen bonds were the main forces between SPI and DS, and DS was electrostatically adsorbed on the surface of SPI. The emulsion stability significantly enhanced with the increase of complex concentration (38.88 times higher than at 1% concentration), the emulsion average droplet size was the lowest (9.64 μm), and the absolute value of potential was the highest (46.67 mV) when the mass ratio of SPI to DS was 1:1 and the complex concentration of 8%. The stability of the emulsion against freezing was improved. CONCLUSION The SPI/DS complex has high solubility and stability under low acidic conditions, and the SPI/DS complex' emulsion has a well stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xinli Zhang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
9
|
Wang Y, Yang S, Zhang L, Yuan F, Mao L, Liu J, Gao Y. Effects of different mechanical processes on the structural and powdery properties of insoluble undenatured type II collagen. Food Chem 2023; 406:135068. [PMID: 36462358 DOI: 10.1016/j.foodchem.2022.135068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the effects of dynamic high-pressure homogenization (DHPH), dynamic high-pressure microfluidization (DHPM), and wet media milling (WMM) processes on the particle size, microstructure, triple helix structure, wettability and suspension stability of insoluble undenatured type II collagen (IUC-II). The structural and powdery properties were regulated by different processes and parameters. By contrast, WMM-treated IUC-II showed smallest particle size (15.70 μm), highest wetting rate (216.94 mm/h) and best suspension stability. However, individual mechanical processes caused partial disruption of IUC-II triple helix structure. Low-acyl gellan gum (LAGG) could bind to IUC-II through hydrogen bonds and hydrophobic interactions, which protected the triple helix structure and further enhanced powdery properties of IUC-II treated by WMM process, but restrained the soluble transition during digestion. These results demonstrated that WMM process was more suitable for enhancing powdery properties of IUC-II, while the triple helix structure of IUC-II could be effectively protected by LAGG.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shuqiao Yang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
10
|
Enhancing the interfacial stability of O/W emulsion by adjusting interactions of chitosan and rice protein hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Effect of dynamic high-pressure microfluidization on physicochemical, structural, and functional properties of oat protein isolate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Du X, Hu M, Liu G, Yan S, Qi B, Zhang S, Huang Y, Li Y, Chen H, Zhu X. Development of high-internal-phase emulsions stabilized by soy protein isolate-dextran complex for the delivery of quercetin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6273-6284. [PMID: 35510347 DOI: 10.1002/jsfa.11976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Protein-polysaccharide complexes have been widely used to stabilize high-internal-phase emulsion (HIPEs). However, it is still unknown whether soy protein isolate-dextran (SPI-Dex) complexes can stabilize HIPEs or what is the effect of Dex concentration on the HIPEs. Furthermore, the non-covalent interaction mechanism between SPI and Dex is also unclear. Therefore, we fabricated SPI-Dex complexes and used them to stabilize HIPEs-loaded quercetin and explore the interaction mechanism between SPI and Dex, as well as the effect of Dex concentration on the particle size, ζ-potential, microstructure, rheology, quercetin encapsulation efficiency, and gastrointestinal fate of the HIPEs. RESULTS Spectral analysis (fourier transform infrared spectroscopy, ultraviolet spectroscopy, and fluorescence spectroscopy) results identified the formation of SPI-Dex complexes, and indicated that the addition of Dex changed the spatial structure of SPI, whereas thermodynamic analysis (ΔH > 0, ΔS > 0) showed that hydrophobic interactions were the main driving forces in the formation of SPI-Dex complexes. Compared with HIPEs stabilized by SPI, the SPI-Dex complex-stabilized HIPEs had smaller particles (3000.33 ± 201.22 nm), as well as higher ζ-potential (-21.73 ± 1.10 mV), apparent viscosities, modulus, and quercetin encapsulation efficiency (98.19 ± 0.14%). In addition, in vitro digestion revealed that SPI-Dex complex-stabilized HIPEs significantly reduced the release of free fatty acid and improved quercetin bioaccessibility. CONCLUSION HIPEs stabilized by SPI-Dex complexes delayed the release of free fat acid and improved the bioaccessibility of quercetin, and may be help in designing delivery systems for bioactive substances with specific properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Hao Chen
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Xiuqing Zhu
- College of Food Science, Northeast Agricultural University, Harbin, China
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
13
|
Zhang N, Xiong Z, Xue W, He R, Ju X, Wang Z. Insights into the effects of dynamic high-pressure microfluidization on the structural and rheological properties of rapeseed protein isolate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Effect of ball-milling treatment on the structure, physicochemical properties and allergenicity of proteins from oyster (Crassostrea gigas). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Micro/nano emulsion delivery systems: Effects of potato protein/chitosan complex on the stability, oxidizability, digestibility and β - carotene release characteristics of the emulsion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Hu C, Xiong H. Structure, interfacial adsorption and emulsifying properties of potato protein isolate modified by chitosan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Li C, Wang Q, Zhang C, Lei L, Lei X, Zhang Y, Li L, Wang Q, Ming J. Dynamic high‐pressure microfluidization enhanced the emulsifying properties of wheat gliadin by rutin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunyi Li
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Qiming Wang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Chi Zhang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Lin Lei
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Xiaojuan Lei
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan The People’s Republic of China
| | - Qiang Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing The People’s Republic of China
| | - Jian Ming
- College of Food Science Southwest University Chongqing The People’s Republic of China
| |
Collapse
|
19
|
The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Zhao Q, Yan W, Liu Y, Li J. Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization. Food Chem 2021; 365:130497. [PMID: 34271327 DOI: 10.1016/j.foodchem.2021.130497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/12/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Dynamic high-pressure microfluidization (DHPM) is an alternative method to physically modify proteins to improve their functional properties. In this study, perilla protein isolate (PPI) was treated by DHPM at different pressures. Results showed that DHPM treatment reduced the particle size and absolute potential of PPI by 75.90% and 22.28%. The increased surface hydrophobicity and free sulfhydryl content were observed in DHPM-treated PPI, which may be caused by the comformation changes of PPI. Furthermore, DHPM treatment would not cause the degradation of the main subunits and the variation of crystalline regions in PPI, but enhancing the thermal stability of PPI at 90 MPa and 120 MPa. Functional properties analysis indicated that DHPM treatment at 120 MPa was more effective in improving the solubility, foaming and emulsifying capacities of PPI. The results suggested that DHPM can be used to enhance the functional properties of PPI and expand its application in food systems.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiqiang Yan
- Institute of Crop Breeding And Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Ge Z, Zhang Y, Jin X, Wang W, Wang X, Liu M, Zhang L, Zong W. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliv. seed meal proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Hu C, Xiong Z, Xiong H, Chen L, Zhang Z. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Res Int 2021; 140:109868. [DOI: 10.1016/j.foodres.2020.109868] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
|
23
|
Liu Q, Li Z, Pan X, Dai Y, Hou H, Wang W, Ding X, Zhang H, Li X, Dong H. Effect of grinding on the structure of pea protein isolate and the rheological properties of its acid‐induced gels. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qiaozhen Liu
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Zhuowa Li
- College of Food Science and Pharmaceutical Engineering Zaozhuang University Zaozhuang Shandong277000China
| | - Xiaoxue Pan
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Yangyong Dai
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Hanxue Hou
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Wentao Wang
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Xiuzhen Ding
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Hui Zhang
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Xiangyang Li
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| | - Haizhou Dong
- College of Food Science and Engineering Shandong Agricultural University Tai’an Shandong271018China
- Engineering and Technology Center for Grain Processing in Shandong Province Tai’an Shandong271018China
| |
Collapse
|
24
|
Ozturk OK, Turasan H. Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties. Crit Rev Food Sci Nutr 2021; 62:4481-4503. [PMID: 33492179 DOI: 10.1080/10408398.2021.1875981] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidization is a unique high-pressure homogenization technique combining various forces such as high-velocity impact, high-frequency vibration, instantaneous pressure drop, intense shear rate, and hydrodynamic cavitation. Even though it is mainly used on emulsion-based systems and known for its effects on particle size and surface area, it also significantly alters physicochemical and functional properties of macromolecules including hydration properties, solubility, viscosity, cation-exchange capacity, rheological properties, and bioavailability. Besides, the transformation of structure and conformation due to the combined effects of microfluidization modifies the material characteristics that can be a base for new innovative food formulations. Therefore, microfluidization is being commonly used in the food industry for various purposes including the formation of micro- and nano-sized emulsions, encapsulation of easily degradable bioactive compounds, and improvement in functional properties of proteins, polysaccharides, and dietary fibers. Although the extent of modification through microfluidization depends on processing conditions (e.g., pressure, number of passes, solvent), the nature of the material to be processed also changes the outcomes significantly. Therefore, it is important to understand the effects of microfluidization on each food component. Overall, this review paper provides an overview of microfluidization treatment, summarizes the applications on macromolecules with specific examples, and presents the existing problems.
Collapse
Affiliation(s)
- Oguz Kaan Ozturk
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Hazal Turasan
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Effect of dynamic high pressure microfluidization on the solubility properties and structure profiles of proteins in water-insoluble fraction of edible bird's nests. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Effects of oxidative modification on the functional, conformational and gelling properties of myofibrillar proteins from Culter alburnus. Int J Biol Macromol 2020; 162:1442-1452. [PMID: 32777424 DOI: 10.1016/j.ijbiomac.2020.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Protein oxidation is a critical process in the deterioration and spoilage of fish and related commodities during processing and storage. In this study, the hydroxyl radical generation system (HRGS) was used to simulate the effect of oxidation on the functional, conformational and gelling properties of topmouth culter (Culter alburnus) myofibrillar proteins (MP). Additionally, the effects of oxidation on the gel-forming abilities of MP were also systematically analyzed from the perspective of intermolecular interaction forces. Oxidation was shown to decrease the total sulfhydryl content, increase the surface hydrophobicity, and induce conformational changes in MP. Rheological analysis showed that oxidation reduced the gel strength. Water holding capacity (WHC) and low-field nuclear magnetic resonance (LF-NMR) analyses showed that low oxidation could enhance water binding of protein matrix, while high-degree oxidation could substantially reduce the gelling properties of MP. The selective solubility of MP gel proved that oxidation could reduce the content of ionic and hydrogen bonds and increase hydrophobic interactions. All the results indicate that oxidation could alter the intermolecular interactions between protein-protein and protein-water molecules, due to irregular unfolding and inhibition of the cross-linking of amino acid side chains, leading to reduction in the quality and function of fish and related products.
Collapse
|