1
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
2
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Luo S, Li P, Zhang A, Meng L, Huang L, Wu X, Cheng H, Tu H, Gong X. G-CSF improving combined whole brain radiotherapy and immunotherapy prognosis of non-small cell lung cancer brain metastases. Int Immunopharmacol 2024; 130:111705. [PMID: 38412673 DOI: 10.1016/j.intimp.2024.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To evaluate the therapeutic advantage of G-CSF to whole brain radiotherapy (WBRT) in combination with immunotherapy as a first-line treatment for non-small cell lung cancer (NSCLC) brain metastases (BMs). METHODS In this retrospective study, 117 patients (37 in G-CSF group and 80 in no G-CSF group) who underwent first-line WBRT combined with immunotherapy were enrolled. Their survival, intracranial response, BM-related symptoms and toxicity were evaluated. RESULTS The overall survival (OS) of patients in G-CSF group was significantly improved compared to patients no G-CSF group (median time: 14.8 vs 10.2 months; HR: 0.61, 95 % CI: 0.38-0.97, p = 0.035). However, there were no significant differences in intracranial responses between the two groups (p > 0.05). The G-CSF group exhibited a significantly higher rate of relief from BM-related symptoms compared to the no G-CSF group (91.7 % vs 59.5 %, p = 0.037). Cox proportional hazards regression analyses indicated that after-treatment ALC > 0.9 × 10^9/L (HR 0.57, 95 % CI 0.32-0.99, p = 0.046) and Hb > 110 g/dL (HR 0.41, 95 % CI 0.24-0.71, p = 0.001) were significant potential factors associated with extended OS. The addition of G-CSF was well tolerated and effectively reduced the incidence of neutropenia (0 % vs 5.0 %, p = 0.17). CONCLUSION Integrating G-CSF with WBRT and immunotherapy as a first-line treatment for NSCLC-BMs has exhibited significant efficacy and favorable tolerability.
Collapse
Affiliation(s)
- Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Litang Huang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Li Y, Teng M, Yang H, Li S, Liu X, Zhang J, Qiu Y, Li L. Impact of macrophage differentiation on hematopoietic function enhancement by Shenzhu ErKang Syrup. Aging (Albany NY) 2024; 16:169-190. [PMID: 38175693 PMCID: PMC10817372 DOI: 10.18632/aging.205358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Shenzhu Erkang Syrup (SZEK) is a traditional Chinese medicine that improves spleen and stomach function, tonifying the Qi and activating the blood; however, its therapeutic effects in hematopoietic dysfunction and their underlying mechanism remain unexplored. In this study, mice were given cyclophosphamide (100 mg/kg) by intraperitoneal injections for three days to produce hematopoietic dysfunction model. We investigated the hematopoietic effect and mechanism of SZEK in mice with hematopoietic dysfunction via histopathological examination, flow cytometry, enzyme-linked immunosorbent assay, and Western blotting combined with intestinal flora and serum metabolomics analysis. In mice with hematopoietic dysfunction, SZEK (gavage, 0.3 mL/25 g) alleviated pathological damage to the bone marrow and spleen; increased the number of naïve cells (Lin-), hematopoietic stem cells (Lin-Sca-1+c-Kit+), long-term self-renewing hematopoietic stem cells (Lin-Sca-1+c-Kit+CD48-CD150+), B lymphocytes (CD45+CD19+), and macrophages (CD11b+F4/80+) in the bone marrow; and reduced inflammation. Preliminary intestinal flora and serum metabolome analyses indicated that the pro-hematopoietic mechanism of SZEK was associated with macrophage differentiation. Further validation revealed that SZEK promoted hematopoiesis by decreasing the number of M2 macrophages and inhibiting the secretion of negative hematopoietic regulatory factors in mice with hematopoietic dysfunction.
Collapse
Affiliation(s)
- Yuan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Meng Teng
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Jicheng Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130012, Jilin, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
6
|
Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, Wang J, Li J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2022; 14:18. [PMID: 36662065 PMCID: PMC9864083 DOI: 10.3390/jfb14010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bone homeostasis (a healthy bone mass) is regulated by maintaining a delicate balance between bone resorption and bone formation. The regulation of physiological bone remodeling by a complex system that involves multiple cells in the skeleton is closely related to bone homeostasis. Loss of bone mass or repair of bone is always accompanied by changes in bone homeostasis. However, due to the complexity of bone homeostasis, we are currently unable to identify all the mechanisms that affect bone homeostasis. To date, bone macrophages have been considered a third cellular component in addition to osteogenic spectrum cells and osteoclasts. As confirmed by co-culture models or in vivo experiments, polarized or unpolarized macrophages interact with multiple components within the bone to ensure bone homeostasis. Different macrophage phenotypes are prone to resorption and formation of bone differently. This review comprehensively summarizes the mechanisms by which macrophages regulate bone homeostasis and concludes that macrophages can control bone homeostasis from osteoclasts, mesenchymal cells, osteoblasts, osteocytes, and the blood/vasculature system. The elaboration of these mechanisms in this narrative review facilitates the development of macrophage-based strategies for the treatment of bone metabolic diseases and bone defects.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200000, China
| | - Chunying Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
7
|
Li L, Zhao C, Kong F, Li YC, Wang C, Chen S, Tan HY, Liu Y, Wang D. Calf Thymus Polypeptide Restrains the Growth of Colorectal Tumor via Regulating the Intestinal Microbiota-Mediated Immune Function. Front Pharmacol 2022; 13:898906. [PMID: 35662701 PMCID: PMC9160181 DOI: 10.3389/fphar.2022.898906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Calf thymus polypeptide (CTP), with a molecular mass of <10 kDa, is prepared from the thymus of less than 30-day-old newborn cattle. In the present study, the inhibitory function of CTP in colorectal cancer (CRC) was investigated in B6/JGpt-Apcem1Cin(MinC)/Gpt (ApcMin/+) mice. CTP hampered tumor development and enhanced the ratio of CD3e−NK1.1+ cells by 113.0% and CD3e+CD28+ cells by 84.7% in the peripheral blood of ApcMin/+ mice. CTP improved the richness, diversity, and evenness of the intestinal microbiota of ApcMin/+ mice, particularly by regulating the abundance of immune-related microorganisms. CTP effectively regulated the expression of immune-related cytokines, such as interleukin (IL)-2 (15.19% increment), IL-12 (17.47% increment), and transforming growth factor (TGF)-β (11.19% reduction). Additionally, it enhanced the levels of CD4 and CD8, as well as the ratio of helper T lymphocytes (Th)1/Th2 in the spleen and tumors of ApcMin/+ mice. In CTP-treated mice, reduced levels of programmed death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), activated nuclear factor of activated T cells 1 (NFAT1), and nuclear factor κB (NF-κB) p65 signaling were noted. Collectively, the anti-CRC effect of CTP is related to the modulation of intestinal microbiota-mediated immune function, which provides a reference for CTP as a therapeutic drug or a combination drug used in CRC treatment in a clinical setting.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Chenfei Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yi-Cong Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Ma WP, Yin SN, Chen JP, Geng XC, Liu MF, Li HH, Liu M, Liu HB. Stimulating the Hematopoietic Effect of Simulated Digestive Product of Fucoidan from Sargassum fusiforme on Cyclophosphamide-Induced Hematopoietic Damage in Mice and Its Protective Mechanisms Based on Serum Lipidomics. Mar Drugs 2022; 20:201. [PMID: 35323500 PMCID: PMC8950290 DOI: 10.3390/md20030201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 μg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.
Collapse
Affiliation(s)
- Wei-Ping Ma
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Shi-Ning Yin
- Qingdao Institute for Food and Drug Control, Qingdao 266000, China;
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
| | - Jia-Peng Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Xi-Cheng Geng
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Ming-Fei Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Hai-Hua Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Ming Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Wang S, Zhang Y, Meng W, Dong Y, Zhang S, Teng L, Liu Y, Li L, Wang D. The Involvement of Macrophage Colony Stimulating Factor on Protein Hydrolysate Injection Mediated Hematopoietic Function Improvement. Cells 2021; 10:2776. [PMID: 34685756 PMCID: PMC8534652 DOI: 10.3390/cells10102776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Protein hydrolysate injection (PH) is a sterile solution of hydrolyzed protein and sorbitol that contains 17 amino acids and has a molecular mass of 185.0-622.0 g/mol. This study investigated the effect of PH on hematopoietic function in K562 cells and mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction. In these myelosuppressed mice, PH increased the number of hematopoietic cells in the bone marrow (BM) and regulated the concentration of several factors related to hematopoietic function. PH restored peripheral blood cell concentrations and increased the numbers of hematopoietic stem cells and progenitor cells (HSPCs), B lymphocytes, macrophages, and granulocytes in the BM of CTX-treated mice. Moreover, PH regulated the concentrations of macrophage colony stimulating factor (M-CSF), interleukin (IL)-2, and other hematopoiesis-related cytokines in the serum, spleen, femoral condyle, and sternum. In K562 cells, the PH-induced upregulation of hematopoiesis-related proteins was inhibited by transfection with M-CSF siRNA. Therefore, PH might benefit the BM hematopoietic system via the regulation of M-CSF expression, suggesting a potential role for PH in the treatment of hematopoietic dysfunction caused by cancer therapy.
Collapse
Affiliation(s)
- Shimiao Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Yuchong Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yihao Dong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Sujie Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (W.M.); (L.T.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.D.); (S.Z.); (Y.L.)
| |
Collapse
|
10
|
Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, Qian Y, Zhang M. The Macrophage-Osteoclast Axis in Osteoimmunity and Osteo-Related Diseases. Front Immunol 2021; 12:664871. [PMID: 33868316 PMCID: PMC8044404 DOI: 10.3389/fimmu.2021.664871] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoimmunity is involved in regulating the balance of bone remodeling and resorption, and is essential for maintaining normal bone morphology. The interaction between immune cells and osteoclasts in the bone marrow or joint cavity is the basis of osteoimmunity, in which the macrophage-osteoclast axis plays a vital role. Monocytes or tissue-specific macrophages (macrophages resident in tissues) are an important origin of osteoclasts in inflammatory and immune environment. Although there are many reports on macrophages and osteoclasts, there is still a lack of systematic reviews on the macrophage-osteoclast axis in osteoimmunity. Elucidating the role of the macrophage-osteoclast axis in osteoimmunity is of great significance for the research or treatment of bone damage caused by inflammation and immune diseases. In this article, we introduced in detail the concept of osteoimmunity and the mechanism and regulators of the differentiation of macrophages into osteoclasts. Furthermore, we described the role of the macrophage-osteoclast axis in typical bone damage caused by inflammation and immune diseases. These provide a clear knowledge framework for studying macrophages and osteoclasts in inflammatory and immune environments. And targeting the macrophage-osteoclast axis may be an effective strategy to treat bone damage caused by inflammation and immune diseases.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|