1
|
Geçgel C, Yabalak E, Turabik M. Simultaneous synthesis of super-paramagnetic hydrochar in a one-pot using subcritical water medium and evaluation of its photocatalytic activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121333. [PMID: 38833925 DOI: 10.1016/j.jenvman.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The unregulated release of chemical dyes into the environment presents considerable environmental hazards when left untreated. Photocatalytic degradation, acknowledged as an eco-friendly and cost-effective method, has garnered attention for its efficacy in eliminating organic pollutants like dye. Consequently, the development of multifunctional materials with different applications in environmental and catalytic fields emerges as a promising avenue. Recognizing the significance of integrating catalysts and porous materials for enhancing interactions between pollutants and photo-sensitive substances, magnetic hydrochar emerges as a solution offering heightened efficiency, scalability, recyclability, and broad applicability in various environmental processes, notably wastewater treatment, due to its facile separation capability. In this study, Fe3O4-based, super-paramagnetic hydrochar (SMHC) was simultaneously synthesized in a single step using a coconut shell in the subcritical water medium. A thorough analysis was conducted on both raw hydrochar (RHC) and SMHC to unravel the mechanism of interaction between Fe3O4 nanoparticles and the hydrochar matrix. The synthesized hydrochar exhibited super-paramagnetic characteristics, with a saturation magnetization of 23.7 emu/g and a magnetic hysteresis loop. SMHC displayed a BET surface area of 42.6 m2/g and an average pore size of 26.3 nm, indicating a mesoporous structure according to nitrogen adsorption-desorption isotherms. XRD analysis revealed magnetic crystal sizes in the obtained SMHC to be 13.7 nm. The photocatalytic performance of SMHC was evaluated under visible light exposure in the presence of H2O2 for Astrazon yellow (AY) dye degradation, with optimization conducted using response surface methodology (RSM). The most substantial dye removal, reaching 92.83%, was achieved with 0.4% H2O2 at a 20 mg/L dye concentration and an 80-min reaction duration.
Collapse
Affiliation(s)
- Cihan Geçgel
- Advanced Technology Education Research and Application Center, Mersin University, 33343, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey; Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey.
| | - Meral Turabik
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey; Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey
| |
Collapse
|
2
|
Kalantari S, Shokuhfar A. On the diverse utility of Cu doped ZnS/Fe 3O 4 nanocomposites. Sci Rep 2024; 14:11669. [PMID: 38778173 DOI: 10.1038/s41598-024-62611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The global water crisis is a growing concern, with water pollution from organic dyes being a significant issue. Photocatalysis has emerged as a sustainable and renewable method for removing organic pollutants from wastewater. The study synthesized innovative (2.5, 5 and 10 wt%) Cu doped zinc sulfide/iron oxide nanocomposites using a sonochemical method, which have versatile applications in adsorption and photocatalytic degradation of organic pollutants in wastewater. The nanocomposites underwent comprehensive characterization using powder X-ray diffraction, fourier-transform infrared spectroscopy, photoluminescence spectroscopy, Ultraviolet-Visible spectrophotometer, field emission scanning electron microscopy combined with energy dispersive X-ray spectroscopy and Mott-Schottky analysis. The synthesized samples demonstrate strong adsorption ability to remove RhB and MB dyes. Afterward, we evaluated their capability to degrade Rhodamine B (RhB) dye under UV light exposure. The greatest photocatalytic efficiency was noticed when employing a UV-C lamp in combination with the 10 wt% Cu doped ZnS/Fe3O4 nanocomposite as photocatalyst (98.8% degradation after 60 min irradiation). The Langmuir-Hinshelwood model can be used to describe the pseudo first order kinetics of RhB dye photodegradation. The calculated ban gap values are 4.77, 4.67, and 4.55 eV, for (2.5, 5 and 10 wt%) Cu doped ZnS/Fe3O4, respectively. Furthermore, 10 wt% Cu doped ZnS/Fe3O4 showed good recyclability, with a degradation rate of 89% even after five cycles. Consequently, prepared samples have outstanding photocatalytic activity and can be used as useful adsorbents in water purification.
Collapse
Affiliation(s)
- Shirin Kalantari
- Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Ali Shokuhfar
- Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Thi Huong N, Thi Mai Huong P, Thi Kim Giang N, Thi Lan P, Thanh Dong V, Tien Dung C. Fe 3O 4/CuO/Chitosan Nanocomposites: An Ultrasound-Assisted Green Approach for Antibacterial and Photocatalytic Properties. ACS OMEGA 2023; 8:42429-42439. [PMID: 38024769 PMCID: PMC10652728 DOI: 10.1021/acsomega.3c04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
The fundamental goal of this research was to use an environmentally friendly sonochemical method to synthesize a Fe3O4/CuO/chitosan magnetic nanocomposite. The nanocomposites featured particle sizes ranging from 50 to 90 nm, and structural characteristics were thoroughly examined. Moreover, the material displayed selective photodegradation capabilities with MB, achieving an impressive efficiency of nearly 98% within 180 min under specific conditions. Notably, the material's reusability was remarkable, maintaining an efficiency of approximately 88% even after five cycles. The possible photodegradation mechanism was proposed based on the evaluation of energy bands, along with a comprehensive analysis of the impacts on MB photodegradation. Concurrently, adsorption isotherms and kinetic models were evaluated. Additionally, this material exhibited promising antibacterial activity against Saccharomyces cerevisiae, Bacillus subtilis, and Escherichia coli. These findings suggested that the Fe3O4/CuO/chitosan material could be utilized in real-world scenarios for environmental purification due to its ability to function as a photocatalyst and antibacterial agent.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Institute
of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Ha Noi 100000, Vietnam
| | - Pham Thi Mai Huong
- Hanoi
University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi 100000, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Phung Thi Lan
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Vu Thanh Dong
- Institute
of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Ha Noi 100000, Vietnam
| | - Cong Tien Dung
- Hanoi
University of Mining and Geology, 18 Pho Vien, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Maruthupandy M, Muneeswaran T, Vennila T, Anand M, Cho WS, Quero F. Development of chitosan decorated Fe 3O 4 nanospheres for potential enhancement of photocatalytic degradation of Congo red dye molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120511. [PMID: 34695713 DOI: 10.1016/j.saa.2021.120511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Fe3O4 nanospheres (Nsps) and chitosan (Cts)/Fe3O4 Nsps were prepared using a one-pot hydrothermal method and subsequently used as photocatalysts against the degradation of Congo red (CR) dye molecules. The sphere-shaped Fe3O4 nanoparticles were heterogeneously decorated by the Cts matrix, which was confirmed by powder X-ray diffraction, scanning and transmission electron microscopies. The Cts/Fe3O4 Nsps demonstrated 98% efficient photocatalytic activity against CR dye molecules upon 60 min exposure to visible light compared to Fe3O4 Nsps (77% for 60 min). When compared to Fe3O4 Nsps, the visible light photocatalytic efficiency of Cts/Fe3O4 Nsps against CR dye molecules was significantly improved.
Collapse
Affiliation(s)
- Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea; Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.
| | - Thillaichidambaram Muneeswaran
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | | | - Muthusamy Anand
- Department of Marine and Coastal Studies, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea.
| | - Franck Quero
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile; Millennium Nucleus in Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile.
| |
Collapse
|
5
|
Gulati S, Lingam B HN, Baul A, Kumar S, Wadhwa R, Trivedi M, Varma RS, Amar A. Recent progress, synthesis, and applications of chitosan-decorated magnetic nanocomposites in remediation of dye-laden wastewaters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03558h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past several decades, the disposal of dyes from the industrial manufacturing sector has had an inadvertent impact on water ecology as polluted water bodies with these hazardous dyes...
Collapse
|
6
|
Asadzadeh Patehkhor H, Fattahi M, Khosravi-Nikou M. Synthesis and characterization of ternary chitosan-TiO 2-ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater. Sci Rep 2021; 11:24177. [PMID: 34921173 PMCID: PMC8683447 DOI: 10.1038/s41598-021-03492-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022] Open
Abstract
Various nanocomposites of TiO2-ZnO, TiO2-ZnO/CS, and TiO2-ZnO/CS-Gr with different molar ratios were synthesized by sol-gel and ultrasound-assisted methods and utilized under UV irradiation to enhance the photocatalytic degradation of tetracycline. Characterization of prepared materials were carried out by XRD, FT-IR, FE-SEM, EDX and BET techniques. The TiO2-ZnO with the 1:1 molar ratio supported with 1:2 weight ratio CS-Gr (T1‒Z1/CS1‒Gr2 sample) appeared as the most effective material at the optimized operational conditions including the tetracycline concentration of 20 mg/L, pH = 4, catalyst dosage of 0.5 g/L, and 3 h of irradiation time. As expected, the graphene had a significant effect in improving degradation results. The detailed performances of the T1‒Z1/CS1‒Gr2 were compared with ternary nanocomposites from EDX and BET results as well as from the degradation viewpoint. This novel photocatalyst can be effective in actual pharmaceutical wastewater treatment considering the applied operational parameters.
Collapse
Affiliation(s)
- Hossein Asadzadeh Patehkhor
- grid.444962.90000 0004 0612 3650Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Moslem Fattahi
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Mohammadreza Khosravi-Nikou
- grid.444962.90000 0004 0612 3650Department of Gas Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology, Ahvaz, Iran
| |
Collapse
|
7
|
Vasantharaj S, Shivakumar P, Sathiyavimal S, Senthilkumar P, Vijayaram S, Shanmugavel M, Pugazhendhi A. Antibacterial activity and photocatalytic dye degradation of copper oxide nanoparticles (CuONPs) using Justicia gendarussa. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Roacho-Pérez JA, Rodríguez-Aguillón KO, Gallardo-Blanco HL, Velazco-Campos MR, Sosa-Cruz KV, García-Casillas PE, Rojas-Patlán L, Sánchez-Domínguez M, Rivas-Estilla AM, Gómez-Flores V, Chapa-Gonzalez C, Sánchez-Domínguez CN. A Full Set of In Vitro Assays in Chitosan/Tween 80 Microspheres Loaded with Magnetite Nanoparticles. Polymers (Basel) 2021; 13:polym13030400. [PMID: 33513783 PMCID: PMC7865444 DOI: 10.3390/polym13030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Microspheres have been proposed for different medical applications, such as the delivery of therapeutic proteins. The first step, before evaluating the functionality of a protein delivery system, is to evaluate their biological safety. In this work, we developed chitosan/Tween 80 microspheres loaded with magnetite nanoparticles and evaluated cell damage. The formation and physical-chemical properties of the microspheres were determined by FT-IR, Raman, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and SEM. Cell damage was evaluated by a full set of in vitro assays using a non-cancerous cell line, human erythrocytes, and human lymphocytes. At the same time, to know if these microspheres can load proteins over their surface, bovine serum albumin (BSA) immobilization was measured. Results showed 7 nm magnetite nanoparticles loaded into chitosan/Tween 80 microspheres with average sizes of 1.431 µm. At concentrations from 1 to 100 µg/mL, there was no evidence of changes in mitochondrial metabolism, cell morphology, membrane rupture, cell cycle, nor sister chromatid exchange formation. For each microgram of microspheres 1.8 µg of BSA was immobilized. The result provides the fundamental understanding of the in vitro biological behavior, and safety, of developed microspheres. Additionally, this set of assays can be helpful for researchers to evaluate different nano and microparticles.
Collapse
Affiliation(s)
- Jorge A Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Kassandra O Rodríguez-Aguillón
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Hugo L Gallardo-Blanco
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - María R Velazco-Campos
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - Karla V Sosa-Cruz
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Perla E García-Casillas
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Luz Rojas-Patlán
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico;
| | - Ana M Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Christian Chapa-Gonzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
- Correspondence: (C.C.-G.); (C.N.S.-D.)
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
- Correspondence: (C.C.-G.); (C.N.S.-D.)
| |
Collapse
|
9
|
Abou-Zeid RE, Kamal KH, Abd El-Aziz ME, Morsi SM, Kamel S. Grafted TEMPO-oxidized cellulose nanofiber embedded with modified magnetite for effective adsorption of lead ions. Int J Biol Macromol 2020; 167:1091-1101. [PMID: 33186652 DOI: 10.1016/j.ijbiomac.2020.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
According to the World Health Organization, nearly a billion people do not have incoming to pure drinking water and much of that water is contaminated with high levels of heavy elements. In this study, adsorption of lead ions has been studied by nanocomposites which prepared through acrylic acid grafting and amino-functionalized magnetized (FM-NPs) TEMPO-oxidized cellulose nanofiber (TEMPO-CNF). The amino-functionalized magnetite was acting as a crosslinked. The crystallinity of TEMPO-CNF was 75 with a 4-10 nm diameter range, while the average particle size of FM-NPs was 30 nm. The adsorption studies illustrated that the elimination efficiency of lead ions was 80% by the prepared nanocomposite that includes a minimum amount of crosslinker (1%), which demonstrated that the magnetic grafted oxidized cellulose nanofiber nanocomposite is a promising green adsorbent material to eliminate heavy metal ions and is additionally easy to get rid of due to its magnetic property. The kinetics and isotherms studied found that the sorption reaction follows a pseudo-second-order model (R2 = 0.997) and Freundlich model (R2 = 0.993), respectively, this indicated that the adsorption of lead ion occurs within the pores and via the functional groups present on the nanocomposite.
Collapse
Affiliation(s)
- Ragab E Abou-Zeid
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Kholod H Kamal
- Water Pollution Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - M E Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - S M Morsi
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
10
|
Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int J Biol Macromol 2020; 163:603-617. [DOI: 10.1016/j.ijbiomac.2020.06.287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
|
11
|
Wang L, Mao H, Li Z, Wang C, Gao D. Immobilizing Ag/Cu 2O on cotton fabric to enhance visible light photocatalytic activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj04391e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag/Cu2O composites were prepared by the solvothermal and photo-reduction method.
Collapse
Affiliation(s)
- Lili Wang
- College of Textiles and Clothes
- Yancheng Institute of Technology
- Yancheng
- P. R. China
| | - Haiyan Mao
- College of Textiles and Clothes
- Yancheng Institute of Technology
- Yancheng
- P. R. China
| | - Ziyin Li
- College of Textiles and Clothes
- Yancheng Institute of Technology
- Yancheng
- P. R. China
| | - Chunxia Wang
- College of Textiles and Clothes
- Yancheng Institute of Technology
- Yancheng
- P. R. China
| | - Dawei Gao
- College of Textiles and Clothes
- Yancheng Institute of Technology
- Yancheng
- P. R. China
| |
Collapse
|