1
|
Qi X, Liu Y, Zhou Y, Li H, Yang J, Liu S, He X, Li L, Zhang C, Yu H. A pectic polysaccharide from Typhonii Rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism. Carbohydr Polym 2025; 348:122897. [PMID: 39567133 DOI: 10.1016/j.carbpol.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
The pectic polysaccharide WTRP-A0.2b (43 kDa) has been isolated from Typhonii rhizoma and analyzed in terms of its structural features, anti-tumor activities and mechanism of action. NMR, FT-IR, monosaccharide composition, and enzymology demonstrate that WTRP-A0.2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 3.7:1:1.7, respectively. The RG-I domains contain a highly branched structure that is substituted primarily with β-D-1,4-galactan, α-L-1,5-arabinan, and AG-II. The HG domains contain un-esterified and methyl-esterified and/or acetyl-esterified oligogalacturonides with a degree of polymerization of 1-8. In vitro experiments demonstrate that WTRP-A0.2b inhibits proliferation of K562 cells by inducing mitochondrial damage and suppressing glycolysis. This activity promotes mitochondrial permeability, increases production of reactive oxygen species (ROS), boosts extracellular oxygen consumption and adenosine triphosphate (ATP) content, while it decreases uncoupling protein-2 (UCP2) expression and lactic acid content. Our results provide valuable insight for screening natural polysaccharide-based anti-tumor effects of polysaccharides from Typhonii rhizoma.
Collapse
Affiliation(s)
- Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Ying Liu
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Ying Zhou
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Heqi Li
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Jingyi Yang
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Senyang Liu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Xinyi He
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Lei Li
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Chunjing Zhang
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Yu X, Peng M, Liu X, Shang Y, Wang D, Jin W, Li F. Physicochemical Properties and Biological Activities of Polysaccharides from Panax Notoginseng Separated by Fractional Precipitation. Chem Biodivers 2024:e202402002. [PMID: 39363708 DOI: 10.1002/cbdv.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
The dried root of Panax notoginseng is a medicinal and food ingredient. P. notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20 %, 40 %, and 60 % concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, all PNPs had distinct moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mengli Peng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiaocheng Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
3
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Liu S, Geng J, Chen W, Zong Y, Zhao Y, Du R, He Z. Isolation, structure, biological activity and application progress of ginseng polysaccharides from the Araliaceae family. Int J Biol Macromol 2024; 276:133925. [PMID: 39032904 DOI: 10.1016/j.ijbiomac.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
6
|
Jing X, Zhou G, Zhu A, Jin C, Li M, Ding K. RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis. Carbohydr Polym 2024; 337:122139. [PMID: 38710550 DOI: 10.1016/j.carbpol.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024]
Abstract
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.
Collapse
Affiliation(s)
- Xiaoqi Jing
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Guangqin Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Wei G, Zhang G, Li M, Zheng Y, Zheng W, Wang B, Zhang Z, Zhang X, Huang Z, Wei T, Shi L, Chen S, Dong L. Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides. HORTICULTURE RESEARCH 2024; 11:uhae170. [PMID: 39135729 PMCID: PMC11317898 DOI: 10.1093/hr/uhae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Panax notoginseng is a famous perennial herb widely used as material for medicine and health-care food. Due to its various therapeutic effects, research work on P. notoginseng has rapidly increased in recent years, urging a comprehensive review of research progress on this important medicinal plant. Here, we summarize the latest studies on the representative bioactive constituents of P. notoginseng and their multiple pharmacological effects, like cardiovascular protection, anti-tumor, and immunomodulatory activities. More importantly, we emphasize the biosynthesis and regulation of ginsenosides, which are the main bioactive ingredients of P. notoginseng. Key enzymes and transcription factors (TFs) involved in the biosynthesis of ginsenosides are reviewed, including diverse CYP450s, UGTs, bHLH, and ERF TFs. We also construct a transcriptional regulatory network based on multi-omics data and predicted candidate TFs mediating the biosynthesis of ginsenosides. Finally, the current three major biotechnological approaches for ginsenoside production are highlighted. This review covers advances in the past decades, providing insights into quality evaluation and perspectives for the rational utilization and development of P. notoginseng resources. Modern omics technologies facilitate the exploration of the molecular mechanisms of ginsenoside biosynthesis, which is crucial to the breeding of novel P. notoginseng varieties. The identification of functional enzymes for biosynthesizing ginsenosides will lead to the formulation of potential strategies for the efficient and large-scale production of specific ginsenosides.
Collapse
Affiliation(s)
- Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Mengzhi Li
- Nanyang Institute of Technology, Nanyang, No.80, Changjiang Road, Wulibao Street, Wancheng District, 473000, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Wenke Zheng
- Tianjin University of Traditional Chinese Medicine, No. 312, Anshan West Road, Nankai District, Tianjin, 301617, China
| | - Bo Wang
- Hubei Institute for Drug Control, No.54, Dingziqiao Road, Zhongnan Road, Wuchang District, Wuhan, 430012, China
| | - Zhaoyu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Xiao Zhang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Ziying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Tengyun Wei
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, No. 37, 12 Qiao Road, Jinniu District, Chengdu, 611137, China
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| |
Collapse
|
8
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
9
|
Sun XZ, Zhang QY, Jiang SL, Zhu RJ, Chai JH, Liang J, Kuang HX, Xia YG. Structural elucidation a complex galactosyl and glucosyl-rich pectin from the pericarp of immature fruits of Juglans mandshurica Maxim. Glycoconj J 2024; 41:201-216. [PMID: 38954268 DOI: 10.1007/s10719-024-10156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
A glucosyl-rich pectin, JMMP-3 (Mw, 2.572 × 104 g/mol, O-methyl % = 3.62%), was isolated and purified from the pericarp of the immature fruit of Juglans mandshurica Maxim. (QingLongYi). The structure of JMMP-3 was studied systematically by infrared spectroscopy, monosaccharide compositions, methylation analysis, partial acid hydrolysis, and 1/2D-NMR. The backbone of JMMP-3 possessed a smooth region (→ 4GalA1 →) and a hairy region (→ 4GalA1 → 2Rha1 →) with a molar ratio of 2: 5. The substitution of four characteristic side chains (R1-R4) occurs at C-4 of → 2,4)-α-Rhap-(1→, where R1 is composed of → 5)-α-Araf-(1→, R2 is composed of → 4)-β-Galp-(1 → and β-Galp-(1→, R3 is composed of α-Glcp-(1→, →4)-α-Glcp-(1 → and → 4,6)-α-Glcp-(1→, and R4 is composed of → 5)-α-Araf-(1→, β-Galp-(1→, → 4)-β-Galp-(1→, → 3,4)-β-Galp-(1→, → 4,6)-β-Galp-(1 → and → 2,4)-β-Galp-(1 → . In addition, the antitumor activity of JMMP-3 on HepG2 cells was preliminarily investigated.
Collapse
Affiliation(s)
- Xi-Zhe Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Qing-Yu Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rong-Jian Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun-Hong Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
10
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
11
|
Liu W, Li K, Zhang H, Li Y, Lin Z, Xu J, Guo Y. An antitumor arabinan from Glehnia littoralis activates immunity and inhibits angiogenesis. Int J Biol Macromol 2024; 263:130242. [PMID: 38368974 DOI: 10.1016/j.ijbiomac.2024.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Glehnia littoralis is an edible plant with significant medicinal value. To further elucidate the potential functional components for developing antitumor agents or functional foods, the polysaccharides in this plant were investigated, and a homogeneous polysaccharide, GLP90-2, was obtained through extraction and ethanol precipitation. By employing methylation, GC-MS, FT-IR, and NMR analysis, GLP90-2 was identified as an arabinan having a molecular weight of 7.76 × 103 g/mol and consisting of three types of residues: α-l-Araf-(1→, →5)-α-l-Araf-(1→, and →3,5)-α-l-Araf-(1→. The subsequent functional analysis revealed that GLP90-2 suppressed tumor development and metastasis in a zebrafish model. Mechanistic studies have shown that GLP90-2 promoted the maturation of DC2.4 cells and macrophages and enhanced the expression of immune-related cytokines, which may be attributed to the interaction between GLP90-2 and TLR-4. Additionally, GLP90-2 exhibited a strong interaction with PD-1, contributing to the activation of immunity. Furthermore, GLP90-2 suppressed angiogenesis in the transgenic zebrafish model, and this impact may be ascribed to the modulation of the VEGF/VEGFR-2 signaling pathway. All the results indicate that GLP90-2 demonstrates a strong tumor immunotherapy effect in vivo and has high potential for development.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Kexin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
12
|
Luo B, Yang F, Chen P, Zuo HY, Liang YF, Xian MH, Tang N, Wang GE. A Novel Polysaccharide Separated from Panax Notoginseng Residue Ameliorates Restraint Stress- and Lipopolysaccharide-induced Enteritis in Mice. Chem Biodivers 2023; 20:e202300648. [PMID: 37615232 DOI: 10.1002/cbdv.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Polysaccharides are rich in Panax notoginseng residue after extraction. This study aims to explore the structural characteristics of PNP-20, which is a homogeneous polysaccharide, separated from P. notoginseng residue by fractional precipitation and evaluate the anti-enteritis effect of PNP-20. The structure of PNP-20 was determined by spectroscopic analyses. A mouse model with enteritis induced by restraint stress (RS) and lipopolysaccharide (LPS) was used to evaluate the pharmacological effect of PNP-20. The results indicated that PNP-20 consisted of glucose (Glc), galactose (Gal), Mannose (Man) and Rhamnose (Rha). PNP-20 was composed of Glcp-(1→, →4)-α-Glcp-(1→, →4)-α-Galp-(1→, →4,6)-α-Glcp-(1→, →4)-Manp-(1→ and →3)-Rhap-(1→, and contained two backbone fragments of →4)-α-Glcp-(1→4)- α-Glcp-(1→ and →4)-α-Galp-(1→4)-α-Glcp-(1→. PNP-20 reduced intestinal injury and inflammatory cell infiltration in RS- and LPS-induced enteritis in mice. PNP-20 decreased the expression of intestinal tumor necrosis factor-α, NOD-like receptor family pyrin domain containing 3, and nuclear factor-κB and increased the expression of intestinal superoxide dismutase 2. In conclusion, PNP-20 may be a promising material basis of P. Notoginseng for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Bi Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Fan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Peng Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Hao-Yu Zuo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Yun-Fei Liang
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou, China
| | - Ming-Hua Xian
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Nan Tang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Zhong Road, Guangzhou, China
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| |
Collapse
|
13
|
Pak U, Cheng H, Liu X, Wang Y, Ho C, Ri H, Xu J, Qi X, Yu H. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis. Int J Biol Macromol 2023; 248:125896. [PMID: 37481190 DOI: 10.1016/j.ijbiomac.2023.125896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this study, we isolated the pectic polysaccharide WSMP-A2b (37 kDa) from the stems and leaves of Swertia mileensis, and we investigated its compositional/structural features and antioxidant activity. FT-IR, NMR, monosaccharide composition, enzymatic hydrolysis and methylation analyses indicated that WSMP-A2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 2.1:1.0:2.2. The RG-I domain is primarily substituted with α-L-1,5-arabinan and type II arabinogalactan (AG-II) side chains, as well as minor contributions of β-D-1,4-galactan and/or type I arabinogalactan (AG-I) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with a 1 to 7 degree of polymerization after endo-polygalacturonase degradation. WSMP-A2b showed stronger antioxidant activity in vitro, in part this might due to the presence of galacturonic acid (GalA). In addition, WSMP-A2b exerted a protective effect on tert-butyl hydroperoxide (tBHP)-induced oxidative stress in INS-1 cells by reducing reactive oxygen species (ROS) production and increasing the glutathione/oxidized glutathione (GSH/GSSG) ratio. Our results provide crucial structural information on this pectic polysaccharide from Swertia mileensis, thus prompting further investigation into its structure-activity relationship.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Hao Cheng
- Department of Clinics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xianbin Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuwen Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - HyonIl Ri
- Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Jing Xu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China; Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China.
| |
Collapse
|
14
|
Muñoz-Almagro N, Molina-Tijeras JA, Montilla A, Vezza T, Sánchez-Milla M, Rico-Rodríguez F, Villamiel M. Pectin from sunflower by-products obtained by ultrasound: Chemical characterization and in vivo evaluation of properties in inflammatory bowel disease. Int J Biol Macromol 2023; 246:125505. [PMID: 37355071 DOI: 10.1016/j.ijbiomac.2023.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Inflammatory bowel disease (IBD) is a public health challenge and the use of pectin for symptom amelioration is a promising option. In this work, sunflower pectin has been extracted without (CHP) and with assistance of ultrasound (USP) using sodium citrate as a food-grade extracting agent. At optimal conditions (64 °C, 23 min) the highest yield was obtained with ultrasound application (15.5 vs. 8.1 %). Both pectins were structurally characterized by 1H NMR, HPSEC-ELSD, FT-IR and GC-FID. Unlike CHP, USP showed a lower molecular weight, higher galacturonic acid, lower degree of methyl-esterification and, overall, higher viscosity. These characteristics could affect the anti-inflammatory activity of pectins, evaluated using DSS-induced IBD model mice. So, USP promoted the defence (ICAM-1) and repair of the gastrointestinal mucosa (TFF3, ZO-1) more effectively than CHP. These results demonstrate the potential amelioration of acute colitis in IBD mice through USP supplementation. Taking into account the biomarkers analysed, these results demonstrate, for the first time, the positive impact of sunflower pectin extracted by ultrasound under very soft conditions on inflammatory bowel disease that might open up new possibilities in the treatment of this serious pathology.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose Alberto Molina-Tijeras
- Departamento de Farmacología, Centro de Investigación Biomédica (CIBM), Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Teresa Vezza
- Departamento de Farmacología, Centro de Investigación Biomédica (CIBM), Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - María Sánchez-Milla
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Fabián Rico-Rodríguez
- Facultad de Ingeniería, Programa de Ingeniería de Alimentos, Universidad de Cartagena, Cartagena de Indias - Colombia
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
15
|
Chen Z, Chen X, Guo L, Cui X, Qu Y, Yang X, Liu Y, Wang C, Yang Y. Effect of different cooking methods on saponin content and hematopoietic effects of Panax notoginseng-steamed chicken on mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116434. [PMID: 37030555 DOI: 10.1016/j.jep.2023.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng-steamed chicken (PNSC) is a medicinal food with ethnic characteristics developed by the Miao ethnic group in the southeast of Yunnan Province, China. PNSC has been eaten for hundreds of years, and its tonic effect has been widely recognized by the people. However, its cooking conditions and scientific connotation of its effect of toning blood and supplementing deficiency are also lack of in-depth analysis. AIM OF THE STUDY To optimize the cooking conditions of Panax notoginseng-steamed chicken (PNSC) and to explore its anemia-improving effects. MATERIALS AND METHODS The ratio of P. notoginseng (PN) to chicken and the steaming time were systematically altered, and the PNSC cooking conditions was optimized with the response surface method. By establishing animal models of postpartum blood-deficiency anemia, acute hemorrhagic anemia and myelosuppressive anemia, the blood replenishing effect of PNSC was explored, and the blood replenishing mechanism of PNSC on myelosuppressive anemia was revealed by immunoblotting analyses and histopathological sectioning. RESULTS The optimal processing conditions included a ratio of chicken to P. notoginseng of 100:5 and a steaming time of 5.5 h. The amounts of P. notoginseng polysaccharides (PNPS), total protein and blood-enriching P. notoginseng saponins were 44.3 mg/g, 2.48% and 2.04%, respectively. Freeze-dried powder of P. notoginseng steamed chicken soup (FPSC) was found to promote the recovery of routine blood factors and organ indexes in the three models of anemia and to activate the JAK2-STAT5 signaling pathway, induce phosphorylation of JAK2 and STAT5 and normalize the secretion of hematopoietic regulators EPO, IL-3, and TNF-α. CONCLUSION FPSC improves the symptoms of anemia in mice, and it plays a role in tonifying blood by activating the JAK2-STAT5 signaling pathway and altering the expression of hematopoiesis-related factors.
Collapse
Affiliation(s)
- Zhuowen Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiaoya Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Lanping Guo
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Yuan Qu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Xiaoyan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, China.
| |
Collapse
|
16
|
Jing Y, Zhang Y, Yan M, Zhang R, Hu B, Sun S, Zhang D, Zheng Y, Wu L. Structural characterization of a heteropolysaccharide from the fruit of Crataegus pinnatifida and its bioactivity on the gut microbiota of immunocompromised mice. Food Chem 2023; 413:135658. [PMID: 36780857 DOI: 10.1016/j.foodchem.2023.135658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Crataegus pinnatifida is a common food in China, Europe and North America. In order to confirm polysaccharide was the material basis for C. pinnatifida to exert immune regulation. A polysaccharide (CPP) with a molecular weight of 13.58 kDa was isolated from C. pinnatifida. The structure of CPP was determined to be a backbone composed of → 3,5)-α-l-Araf-(1→, with two branches consisting of → 4)-α-d-Galp-(1 → and → 5)-α-l-Araf-(1→, with α-l-Araf and α-d-Manp as the terminal unit. CPP (10 ∼ 500 μg/mL) could promote the secretion of nitric oxide, interleukin-2, interleukin-6 and tumor necrosis factor-α in vitro. CPP could significantly restore the body weight of immunosuppressive mice and improve the immune organ index and interleukin-2, interleukin-6, and tumor necrosis factor-α secretion. In addition, CPP increased the abundance of Bacteroidetes and Verrucomicrobia and decreased the abundance of Proteobacteria at the phylum level. So CPP can regulate the gut microbiota and play an important role in immune regulation.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
17
|
Jiang XL, Ma GF, Zhao BB, Meng Y, Chen LL. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng. Front Pharmacol 2023; 14:1190233. [PMID: 37256230 PMCID: PMC10225580 DOI: 10.3389/fphar.2023.1190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polysaccharides are important components of Panax notoginseng that contribute to its immunomodulatory ability. This study aimed to isolate polysaccharides from notoginseng and investigate the structural feature and potential immunomodulatory activity. Methods: The polysaccharide was isolated from notoginseng by anion exchange and gel permeation chromatography. Its preliminary structure was characterized by Fourier transform infrared (FT-IR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The immunoregulatory function was further investigated in cyclophosphamide induced immunosuppressive mice, murine splenocytes and macrophages. Results: A novel homogeneous polysaccharide (PNPB1) was isolated from notoginseng with the molecular weight of 9.3 × 105 Da. Monosaccharide composition analysis indicated that PNPB1 consisted of Glc (88.2%), Gal (9.0%), Ara (2.4%) and trace GlcA, with the major backbone of (1→4)-linked α-Glcp, (1→6)-linked β-Glcp, and (1, 4→6)-linked β-Glcp. The polysaccharide was found to significantly enhance murine body weight, improve their thymus and spleen indices and increase the white blood cells (WBC). PNPB1 significantly enhanced splenic lymphocyte proliferation, NO and cytokine (TNF-α, IL-2, IL-10 and IFN-γ) production, as well as the phagocytosis and TLR2 expression of peritoneal macrophages, indicating potent immunoenhancement effect. Discussion: These findings provide a theoretical basis for elucidating the structure and immune activity of notoginseng polysaccharides.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Gai-Fan Ma
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Zhang S, Ding C, Liu X, Zhao Y, Ding Q, Sun S, Zhang J, Yang J, Liu W, Li W. Research Progress on Extraction, Isolation, Structural Analysis and Biological Activity of Polysaccharides from Panax Genus. Molecules 2023; 28:molecules28093733. [PMID: 37175143 PMCID: PMC10179830 DOI: 10.3390/molecules28093733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Xu X, Deng G, Li X, Li P, Chen T, Zhou L, Huang Y, Yuan M, Ding C, Feng S. Extraction, Structural, and Antioxidant Properties of Oligosaccharides Hydrolyzed from Panax notoginseng by Ultrasonic-Assisted Fenton Degradation. Int J Mol Sci 2023; 24:ijms24054506. [PMID: 36901937 PMCID: PMC10003133 DOI: 10.3390/ijms24054506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Plant polysaccharides exhibit many biological activities that are remarkably affected by molecular size and structures. This study aimed to investigate the degradation effect of ultrasonic-assisted Fenton reaction on the Panax notoginseng polysaccharide (PP). PP and its three degradation products (PP3, PP5, and PP7) were obtained from optimized hot water extraction and different Fenton reaction treatments, respectively. The results showed that the molecular weight (Mw) of the degraded fractions significantly decreased after treatment with the Fenton reaction. But the backbone characteristics and conformational structure were similar between PP and PP-degraded products, which was estimated by comparing monosaccharides composition, functional group signals in FT-IR spectra, X-ray differential patterns, and proton signals in 1H NMR. In addition, PP7, with an Mw of 5.89 kDa, exhibited stronger antioxidant activities in both the chemiluminescence-based and HHL5 cell-based methods. The results indicated that ultrasonic-assisted Fenton degradation might be used to improve the biological activities of natural polysaccharides by adjusting the molecular size.
Collapse
|
20
|
Ma M, Liu X, Ma C, Guo R, Zhang X, Zhang Z, Ren X. Enhancing the antitumor immunosurveillance of PD-L1-targeted gene therapy for metastatic melanoma using cationized Panax Notoginseng polysaccharide. Int J Biol Macromol 2023; 226:1309-1318. [PMID: 36442564 DOI: 10.1016/j.ijbiomac.2022.11.242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Improved curative effects with reduced toxicity has always been the ultimate goal of gene delivery vectors for tumor immunotherapy. Panax notoginseng polysaccharide (PNP), a natural plant-derived macromolecule, not only has antitumor immune activity but also has the typical structural characteristics useful for gene delivery. In this work, positively charged polyethyleneimine (PEI) was directly grafted to the backbone of PNP to induced its charge reversal and generate a functional gene vector (PNP-PEI). Moreover, a short hairpin RNA targeting the programmed death-ligand 1 (PD-L1) was loaded into PNP-PEI to generate a potentially therapeutic nanoparticle (PNP-PEI/shPD-L1). In vitro and in vivo experiments demonstrated that PNP-PEI could efficiently carry the therapeutic shPD-L1 into tumor cells and that PNP-PEI/shPD-L1 could significantly inhibit the expression of PD-L1 and growth of B16-F10 cells. Noteworthily, treatment with PNP-PEI reversed the phenotype of macrophages from M2 to M1 subtype and promoted dendritic cell maturation, which encouraged the host immunity and enhanced the therapeutic antitumor effects. In summary, this study describes a PNP-based gene delivery vector and highlights the beneficial immunopotentiating therapeutic outcomes of PNP-PEI for tumor immunotherapy.
Collapse
Affiliation(s)
- Mengya Ma
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaobin Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaoqun Ma
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruyue Guo
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xueling Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xueling Ren
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
21
|
Hu YB, Hong HL, Liu LY, Zhou JN, Wang Y, Li YM, Zhai LY, Shi ZH, Zhao J, Liu D. Analysis of Structure and Antioxidant Activity of Polysaccharides from Aralia continentalis. Pharmaceuticals (Basel) 2022; 15:ph15121545. [PMID: 36558996 PMCID: PMC9783608 DOI: 10.3390/ph15121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
We extracted, purified, and characterized three neutral and three acidic polysaccharides from the roots, stems, and leaves of Aralia continentalis Kitigawa. The results of the analysis of monosaccharide composition indicated that the polysaccharides from the roots and stems were more similar to each other than they were to the polysaccharides from the leaves. The in vitro antioxidant results demonstrated that the acidic polysaccharides had stronger antioxidant activity than the neutral fractions. Therefore, we investigated the primary purified acidic polysaccharide fractions (WACP(R)-A-c, WACP(S)-A-c, and WACP(L)-A-d) by NMR and enzymatic analysis. The structural analytical results indicated that WACP(R)-A-c contained homogalacturonan (HG); WACP(S)-A-c contained HG and rhamnogalacturonan II (RG-II), and WACP(L)-A-d contained HG, RG-II, and rhamnogalacturonan I (RG-I) domains. Our findings offer insights into the screening of natural polysaccharide-based antioxidants and provide a theoretical basis for the application of A. continentalis.
Collapse
Affiliation(s)
- Yan-bo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Hui-li Hong
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Li-yang Liu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jia-ning Zhou
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yue Wang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi-ming Li
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Li-yuan Zhai
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Zeng-hui Shi
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
- Correspondence: (J.Z.); (D.L.); Tel.: +86-0431-85115751 (J.Z.)
| | - Duo Liu
- School of Life Sciences, Changchun Normal University, Changchun 130032, China
- Correspondence: (J.Z.); (D.L.); Tel.: +86-0431-85115751 (J.Z.)
| |
Collapse
|
22
|
Qu ZY, Liu HQ, Zheng PH, Li YL, Wang YP, Hou W. Saponins and flavonoids from the fruits of Panax notoginseng. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Yang HR, Li X, Liu H, Zhao DR, Zeng YJ. Novel polysaccharide from Panax notoginseng with immunoregulation and prebiotic effects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr Polym 2022; 291:119535. [DOI: 10.1016/j.carbpol.2022.119535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
|
25
|
Pak U, Yu Y, Ning X, Ho C, Ji L, Mayo KH, Zhou Y, Sun L. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort. Int J Biol Macromol 2022; 206:642-652. [PMID: 35247423 DOI: 10.1016/j.ijbiomac.2022.02.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Water-soluble polysaccharides were isolated from the leaves and roots of Isatis indigotica Fort., and their structural features were studied and compared. One neutral polysaccharide fraction (WFIP-N) and three pectin fractions (WFIP-A-A, WFIP-A-B and WFIP-A-C) were obtained from the leaves, and one neutral polysaccharide fraction (WRIP-N) and two pectin fractions (WRIP-A-A and WRIP-A-B) were obtained from the roots. WFIP-A-B (Mw = 34.6 kDa) and WRIP-A-B (Mw = 29.9 kDa) were the major pectic polysaccharides. Monosaccharide composition, FT-IR, enzymatic hydrolysis, NMR and methylation analysis indicated that both WFIP-A-B and WRIP-A-B are composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 1.5:1.0:0.4 and 0.3:1.0:1.7, respectively. WFIP-A-B and WRIP-A-B were found to be rich in RG-I and HG domains, respectively, and mainly contained type II arabinogalactan (AG-II) and α-L-1,5-arabinan side chains, but those in WRIP-A-B were more numerous and longer. Our results provide structural features and differences between these polysaccharides which will help to elucidate their functional differences.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Yang Yu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin Ning
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Li Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
26
|
Wang SL, Wang Y, Wu L, Cai YY, Wang ZC, Alolga RN, Qi LW, Li B, Huang FQ. Paired Derivatization Approach with H/D-Labeled Hydroxylamine Reagents for Sensitive and Accurate Analysis of Monosaccharides by Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2022; 94:3590-3599. [PMID: 35171578 DOI: 10.1021/acs.analchem.1c04924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monosaccharides play important roles in biological processes. Sensitive and accurate analyses of monosaccharides remain challenging because of their high hydrophilicities and poor ionization efficiencies. Here, we developed a paired derivatization approach with H/D-labeled hydroxylamines for simultaneous quantification of 12 monosaccharides by liquid chromatography tandem mass spectrometry (LC-MS/MS). O-(4-Methoxybenzyl)hydroxylamine hydrochloride (4-MOBHA·HCl) showed higher derivatization efficiency for monosaccharides compared to six other hydroxylamine analogues. The derivatization of monosaccharides was readily achieved in an aqueous solution. Furthermore, the deuterium-labeled isotope reagent, d3-4-MOBHA·HCl, was newly synthesized to stably label monosaccharides to improve its accuracy and precision in complex matrix analysis. As a result, 12 monosaccharides were rapidly detected by LC-MS/MS within 16 min with significant improvements in chromatographic separation and retention time. The detection sensitivity increased by 83 to 1600-fold with limits of quantitation ranging from 0.25 to 3.00 fmol. With the paired derivatization strategy, the monosaccharides could be accurately quantified with good linearity (R2 > 0.99) and satisfactory accuracy (recoveries: 85-110%). Using this method, we achieved sensitive and accurate quantification of the monosaccharide composition of herbal polysaccharides and the change in monosaccharide levels in human cell lines under physiopathological conditions. More importantly, the developed method was able to differentiate between the levels of the monosaccharides in fecal samples of human ulcerative colitis (UC) patients and UC mice compared to their respective controls. The differential monosaccharides determined in human feces provided a good diagnostic performance in distinguishing the UC patients from healthy individuals, showing potential for clinical application.
Collapse
Affiliation(s)
- Shi-Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yu Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zi-Chao Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
27
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
28
|
Hu Y, Wang S, Shi Z, Zhai L, Fu J, Zhao J. Purification, characterization, and antioxidant activity of polysaccharides from Okara. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Siqi Wang
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Zenghui Shi
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Liyuan Zhai
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Jingyi Fu
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Jun Zhao
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| |
Collapse
|
29
|
Jia H, Zhao B, Zhang F, Santhanam RK, Wang X, Lu J. Extraction, Structural Characterization, and Anti-Hepatocellular Carcinoma Activity of Polysaccharides From Panax ginseng Meyer. Front Oncol 2021; 11:785455. [PMID: 34912721 PMCID: PMC8666597 DOI: 10.3389/fonc.2021.785455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are the main active ingredients of ginseng. To extract the most effective polysaccharides against hepatocellular carcinoma (HCC), we isolated and characterized the polysaccharides from the mountain cultivated ginseng (MCG) and compared their composition and cytotoxic effect with cultivated ginseng (CG) polysaccharide against HepG2 cell lines for the first time. MCG polysaccharides and CG polysaccharides were fractionated into two fractions such as MTPS-1, MTPS-2 and CTPS-1, CTPS-2 by salting out, respectively. Compared to CG, MCG possessed appreciable cytotoxic effect against HepG2 cells among that MTPS-1 possess fortified effect. Then, MTPS-1 was selected for further isolation process and seven acidic polysaccharides (MCGP-1–MCGP-7) were obtained using ethanol precipitation, ion-exchange, and gel permeation chromatography techniques. Structural characteristics of the polysaccharides (MCGP-1–MCGP-7) were done by adapting methylation/GC-MS and NMR analysis. Overall, MCGP-3 polysaccharide was found to possess significant cytotoxic effect against HepG2 cells with the IC50 value.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fangfang Zhang
- Department of Stomatology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Xinying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
30
|
Liu Y, Li S, Pu M, Qin H, Wang H, Zhao Y, Chen T. Structural Characterization of Polysaccharides Isolated from Panax notoginseng Medicinal Residue and Its Protective Effect on Myelosuppression Induced by Cyclophosphamide. Chem Biodivers 2021; 19:e202100681. [PMID: 34817123 DOI: 10.1002/cbdv.202100681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
This study aims to establish the isolation and purification method of polysaccharides from medicinal residue of Panax notoginseng (PPN). The structure and protective effect of PPN on myelosuppression mice were investigated. One neutral polysaccharide (NPPN) and five acidic polysaccharides (APPN I, APPN II-A, APPN II-B, APPN III-A, and APPN III-B) were obtained. The results confirmed that NPPN, APPN I and APPN II-A are glycan with 1, 4 main chains. APPN III-A is a glycan. APPN II-B and APPN III-B are homogalacturonan pectin with 1, 4 main chains. This study demonstrated that NPPN played a bone marrow protective role in myelosuppression mice induced by cyclophosphamide. NPPN could relieve cell cycle arrest, reduce the apoptosis rate of marrow cells, and improve granulocyte-macrophage colony-stimulating (GM-CSF), thermoplastic polyolefin (TPO) and erythropoietin (EPO) serum level, which contributes to promoting the proliferation of hematopoietic cells.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Yunnan Maternal and Child Health Hospital, No. 200 Gulou Road, Kunming, 650051, P. R. China
| | - Shuang Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Kunming Children's Hospital, No. 288 Qianxing Road, Kunming, 650034, P. R. China
| | - Mengdi Pu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Huayan Qin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Hong Wang
- Department of Geriatrics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, P. R. China
| | - Yunqi Zhao
- College of Science and Technology, Wenzhou-Kean University, No. 88 Daxue Road, Wenzhou, 325060, P. R. China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| |
Collapse
|
31
|
Li X, Chen Y, Gao X, Wu Y, El-Seedi HR, Cao Y, Zhao C. Antihyperuricemic Effect of Green Alga Ulva lactuca Ulvan through Regulating Urate Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11225-11235. [PMID: 34549578 DOI: 10.1021/acs.jafc.1c03607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel polysaccharide from Ulva lactuca (ULP) was purified using a Sepharose CL-4B column. Fourier transform infrared spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy were employed to analyze the structure of ULP. It consisted of rhamnose (Rha), glucuronic acid (GluA), galactose (Gal), and xylose (Xyl) at a molar ratio of 32.75:22.83:1.07:6.46 with the molecular weight of 2.24 × 105 Da. The four major glycosidic residues found in ULP were →2,3)-α-l-Rhap-(1→, →4)-β-d-GlcpA-(1→, →2,6)-β-d-Galp-(1→, and →4)-β-d-Xylp-(1→. The antihyperuricemic activity of ULP was exhibited by detecting related biochemical indexes, urate transporter gene expressions, renal histopathology, and intestinal microbiota shifts. ULP obviously decreased the levels of serum uric acid (UA), blood urea nitrogen, and creatinine, while inhibited serum and hepatic xanthine oxidase activities as well as improved renal injury in hyperuricemic mice. Furthermore, the upregulation of UA excretion genes ABCG2/OAT1 and downregulation of UA resorption genes URAT1 and GLUT9 were detected. In addition, ULP exerted its antihyperuricemic effect through regulating the intestinal microbiome, characterized by elevating the helpful microbial abundance, meanwhile declining the harmful bacterial abundance and restoring the gut microbiome homeostasis. This study demonstrates the antihyperuricemic activity of ULP and its potential effect for the treatment of hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yihan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Hesham Rushdy El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
32
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
33
|
Purification, in-depth structure analysis and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus Jujuba cv. Muzaoresidue. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Discrimination and characterization of Panax polysaccharides by 2D COS-IR spectroscopy with chemometrics. Int J Biol Macromol 2021; 183:193-202. [PMID: 33905800 DOI: 10.1016/j.ijbiomac.2021.04.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
In this study, a novel two-dimensional correlation infrared spectroscopy (2DCOS-IR) is presented to rapidly characterize and discriminate polysaccharides in Panax ginseng (PGP), P. notoginseng (PNP), and P. quinquefolius (PQP) using attenuated total reflection Fourier transform infrared spectroscopy-based on single-characteristic temperature as the external disturbance (2D-sATR-FTIR). Compared with two existing 2DCOS-IR methods based on gradient heating pathways using KBr pellet (100 min; 2D-KBr-FTIR) and attenuated total reflection (30 min; 2D-gATR-FTIR), the new procedure took an average of just 2 min to finish a sample measurement, which resolved previously tedious and time-consuming dilemmas. It offered advantages in the quality evaluation of natural polysaccharides and featured nondestructive, high-throughput, and high-efficiency characteristics. An intuitive analysis of the 2D-sATR-FTIR demonstrated that PNP was first identified because it had fewer auto-peaks. Posteriorly, PGP and PQP were distinguished according to the ratio of the auto-peaks 6 and 9, with the former greater than 1 and the latter less than 1. Furthermore, characteristic auto-peaks 1, 5, and 6 were unambiguously determined as Quality-markers using PCA and PLS-DA for visualized identifications. LDA was successfully used to establish a predictive model of the PGP, PNP, and PQP based on the positions and intensity of these three characteristic auto-peaks.
Collapse
|
35
|
Zhao M, Bai J, Bu X, Yin Y, Wang L, Yang Y, Xu Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr Polym 2021; 259:117729. [PMID: 33673993 DOI: 10.1016/j.carbpol.2021.117729] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 01/22/2023]
Abstract
The polysaccharide from Ribes nigrum L. (RCP) was modified by nitric acid-sodium selenite method. After purification by Sepharose-6B, high purity native (PRCP) and three selenized polysaccharides (PRSPs) with different selenium contents were obtained. Compared with PRCP, PRSPs possessed the lower molecular weight, better water-solubility, physical stability and rheological properties. FT-IR and NMR spectra confirmed PRSPs had the characteristic absorption peaks of polysaccharides and the glycosidic bond types were not changed after selenylation modification, whereas the selenyl groups existing in PRSPs were mainly introduced at the C-6 position of sugar residue →4)-β-d-Manp-(1→. Moreover, PRSPs displayed obviously smoother and smaller flaky structure than PRCP, and their inhibitory effects on α-amylase and α-glucosidase also were greater than PRCP. PRSPs exhibited a reversible inhibition on two enzymes in competitive manner and quenched their fluorescence through the static quenching mechanism. The polysaccharide-enzyme complex was spontaneously formed mainly driven by the hydrophobic interaction and hydrogen bonding.
Collapse
Affiliation(s)
- Meimei Zhao
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xueying Bu
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuting Yin
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
36
|
Zhang M, Zu H, Zhuang X, Yu Y, Wang Y, Zhao Z, Zhou Y. Structural analyses of the HG-type pectin from notopterygium incisum and its effects on galectins. Int J Biol Macromol 2020; 162:1035-1043. [DOI: 10.1016/j.ijbiomac.2020.06.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|