1
|
Bisson G, Melchior S, Comuzzi C, Andreatta F, Rondinella A, Zanocco M, Calligaris S, Marino M. Unrevealing the potentialities in food formulations of a low-branched dextran from Leuconostoc mesenteroides. Food Chem 2024; 460:140718. [PMID: 39106808 DOI: 10.1016/j.foodchem.2024.140718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
The search for novel exopolysaccharides (EPS) with targeted functionalities is currently a topic of great interest. This study aimed to investigate the chemical characteristics and technological properties of a novel EPS (named EPS_O) from Leuconostoc mesenteroides. EPS_O was a high-molecular-weight dextran (>6.68 × 105 g/mol) characterized by high water-holding capacity (785 ± 73%) and high water solubility index (about 99%). EPS_O in water (<30 mg/mL) formed viscous solutions, whereas at concentrations >30 mg/mL, it formed weak gels. Notably, lower concentrations (4-5 mg/mL) exhibited antimicrobial activity against various foodborne pathogens, antibiofilm activity against Listeria monocytogenes, and radical-scavenging activity. These properties are significant for maintaining food quality and promoting health. Based on these findings, EPS_O presents itself as a promising food ingredient that could elevate food quality and confer health benefits to consumers.
Collapse
Affiliation(s)
- Giulia Bisson
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Sofia Melchior
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Clara Comuzzi
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Francesco Andreatta
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Alfredo Rondinella
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Matteo Zanocco
- Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, University of Udine, Udine, Italy
| | - Sonia Calligaris
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy
| | - Marilena Marino
- Department of Agricultural Food Environmental and Animal Science, Via Sondrio 2/A, 33100, University of Udine, Udine, Italy.
| |
Collapse
|
2
|
de Melo Teixeira L, da Silva Santos É, Dos Santos RS, Ramos AVG, Baldoqui DC, Bruschi ML, Gonçalves JE, Gonçalves RAC, de Oliveira AJB. Production of exopolysaccharide from Klebsiella oxytoca: Rheological, emulsifying, biotechnological properties, and bioremediation applications. Int J Biol Macromol 2024; 278:134400. [PMID: 39122076 DOI: 10.1016/j.ijbiomac.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Bacteria can synthesize a broad spectrum of multifunctional polysaccharides including extracellular polysaccharides (EPS). Bacterial EPS can be utilized in the food, pharmaceutical, and biomedical areas owing to their physical and rheological properties in addition to generally presenting low toxicity. From an ecological viewpoint, EPS are biodegradable and environment compatible, offering several advantages over synthetic compounds. This study investigated the EPS produced by Klebsiella oxytoca (KO-EPS) by chemically characterizing and evaluating its properties. The monosaccharide components of the KO-EPS were determined by HPLC coupled with a refractive index detector and GC-MS. The KO-EPS was then analyzed by methylation analysis, FT-IR and NMR spectroscopy to give a potential primary structure. KO-EPS demonstrated the ability to stabilize hydrophilic emulsions with various hydrophobic compounds, including hydrocarbons and vegetable and mineral oils. In terms of iron chelation capacity, the KO-EPS could sequester 41.9 % and 34.1 % of the most common iron states, Fe2+ and Fe3+, respectively. Moreover, KO-EPS exhibited an improvement in the viscosity of aqueous dispersion, being proportional to the increase in its concentration and presenting a non-Newtonian pseudoplastic flow behavior. KO-EPS also did not present a cytotoxic effect indicating that the KO-EPS could have potential applications as a natural thickener, bioemulsifier, and bioremediation agent.
Collapse
Affiliation(s)
- Letícia de Melo Teixeira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Éverton da Silva Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Rafaela Said Dos Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | | | - Débora Cristina Baldoqui
- Department of Chemistry, State University of Maringa, Av. Colombo 5790, Maringa 87.020-900, Brazil
| | - Marcos Luciano Bruschi
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - José Eduardo Gonçalves
- Graduate Program in Clean Technologies and Cesumar Institute of Science, Technology and Innovation (ICETI), Cesumar University (Unicesumar), Av. Guedner 1610, Maringá 87050-390, Brazil
| | - Regina Aparecida Correia Gonçalves
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Arildo José Braz de Oliveira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil.
| |
Collapse
|
3
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
4
|
Garmasheva I, Tomila T, Kharkhota M, Oleschenko L. Exopolysaccharides of lactic acid bacteria as protective agents against bacterial and viral plant pathogens. Int J Biol Macromol 2024; 276:133851. [PMID: 39004247 DOI: 10.1016/j.ijbiomac.2024.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In this study, 25 exopolysaccharides produced by lactic acid bacteria (LAB) were screened for their effect on plant pathogens. The molecular masses of EPS were found to be 3,8-5,0 × 104 Da. The GC-MS analysis revealed that EPSs were majorly composed of glucose (85.85-97.98 %). The FT-IR spectra of EPSs were in agreement with the typical absorption peaks of polysaccharides. EPSs showed a hydroxyl radical scavenging ability. The scavenging rate of EPS ranged from 20 to 50 % at a concentration of 5.0 mg/mL. Significant growth delay of phytopathogenic bacteria was observed after 3-6 h of cultivation. Optical density values of indicator cultures growing in the medium with EPS (1 mg/mL) were lower compared to the control by 24-100 % for Pseudomonas fluorescens, 9-46 % for P. syringae, 47-79 % for Pectobacterium carotovorum, 14-90 % for Clavibacter michiganensis, 9-100 % for Xantomonas campestris, and 45-100 % for X. vesicatorium. EPS retained their inhibitory effect on the growth of X. campestris, X. vesicatorium and C. michiganensis strains after 24-48 h of cultivation, but stimulating effect on the growth of some strains also was observed. LAB EPS showed antibiofilm activity against P. carotovorum, P. syringae, and P. fluorescent, decreasing their biofilm formation by 16-50 %, 14-39 %, and 29-59 %, respectively. Also, stimulation of biofilm formation by X. campestris (by 8-29 %), X. vesicatorium (by 3-32 %) and C. michiganensis (by 31-41 %) strains was observed. EPSs showed antiviral activity against tobacco mosaic virus (TMV). At a concentration of 100 μg/mL, they decreased the infective ability of TMV by 61-92 %. This is the first study demonstrating that LAB EPS exhibited in vitro antibacterial and antibiofilm activity against phytopathogenic bacteria and anti-viral activity against TMV. Thus, LAB EPSs could have great potential for plant protection strategies.
Collapse
Affiliation(s)
- Inna Garmasheva
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine.
| | - Tamara Tomila
- Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Omeliana Pritsaka str., 3, Kyiv 03142, Ukraine
| | - Maxim Kharkhota
- Laboratory of biological polymer compounds, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| | - Ljubov Oleschenko
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| |
Collapse
|
5
|
Zhang L, Ma H, Tang W, Zeng J, Kulyar MF, Hu J. Changes in the Microbiome in Yak Mastitis: Insights Based on Full-Length 16S rRNA Sequencing. Vet Sci 2024; 11:335. [PMID: 39195789 PMCID: PMC11359330 DOI: 10.3390/vetsci11080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Mastitis is an inflammation of the mammary gland that can be caused by various factors, including biological, chemical, mechanical, or physical. Microbiological culture, DNA techniques, and high-throughput next-generation sequencing have been used to identify mastitis-causing pathogens in various animal species. However, little is known about microbiota and microbiome changes linked to yak milk mastitis. This study aimed to characterize the milk microbiota of healthy and mastitis-infected yaks using full-length 16S rRNA sequencing. The results showed that the bacterial microbiota comprises 7 phyla, 9 classes, 20 orders, 39 families, 59 genera, and 72 species. Proteobacteria and Firmicutes were the predominant microbial communities, with lower abundances of Bacteroidota, Actinobacteriota, Acidobacteriota, and other minor groupings also observed. Proteobacteria dominated the clinical and subclinical mastitis groups (95.36% and 89.32%, respectively), in contrast to the healthy group (60.17%). Conversely, Firmicutes were more common in the healthy group (39.7%) than in the subclinical and clinical mastitis groups (10.49% and 2.92%, respectively). The predominant organisms found in the healthy group were Leuconostoc mesenteroides, Lactococcus piscium, Carnobacterium maltaromaticum, and Lactococcus raffinolactis. Low abundances of Staphylococcus aureus species were found in both subclinical and clinical mastitis groups, with Moraxella osloensis and Psychrobacter cibarius dominating the subclinical mastitis group and Pseudomonas fluorescens dominating the clinical mastitis group. An alpha diversity study revealed that the healthy group had a higher microbial diversity than the clinical and subclinical mastitis groups. According to beta-diversity analysis, the principal coordinate analysis identified that mastitis-infected samples significantly differed from healthy ones. The milk microbiota of healthy yaks is more varied, and specific prominent taxa within various groups can act as marker microorganisms for mastitis risk. The genera Leuconostoc and Lactococcus are promising candidates for creating probiotics.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Wenqiang Tang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
6
|
Shan L, Zheng W, Xu S, Zhu Z, Pei Y, Bao X, Yuan Y. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials. Arch Microbiol 2024; 206:295. [PMID: 38856934 DOI: 10.1007/s00203-024-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
Collapse
Affiliation(s)
- Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Wanjun Zheng
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Siyang Xu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
- Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China
| | - Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yunyan Pei
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xiajun Bao
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
7
|
Tian H, Gu Y, Lv Z, Wang L. The exopolysaccharides produced by Leuconostoc mesenteroides XR1 and its effect on silk drawing phenomenon of yoghurt. Int J Biol Macromol 2024; 262:129952. [PMID: 38320635 DOI: 10.1016/j.ijbiomac.2024.129952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Yoghurt fermented by Leuconostoc mesenteroides XR1 from Kefir grains was found to produce a unique silk drawing phenomenon. This property was found to be associated with the exopolysaccharides (EPS), X-EPS, produced by strain XR1. In order to better understand the mechanism that produced this phenomenon, the X-EPS was extracted, purified and characterized. The molecular weight and monosaccharide composition were determined by size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) and ion chromatography (IC) analysis, respectively. The results showed that its molecular weight was 4.183 × 106 g/mol and its monosaccharide composition was glucose, and glucuronic acid, with the contents of 567.6148 and 0.2096 μg/mg, respectively. FT-IR and NMR analyses showed that X-EPS was an α-pyranose polysaccharide and was composed of 92.22 % α-(1 → 6) linked d-glucopyranose units and 7.77 % α-(1 → 3) branching. Furthermore, it showed a chain-like microstructure with branches in atomic force microscopy (AFM) and scanning electron microscopy (SEM) experiments. These results suggested that the unique structure of X-EPS, gave the yoghurt a strong viscosity and cohesiveness, which resulted in the silk drawing phenomenon. This work suggested that X-EPS holds the potential for food and industrial applications.
Collapse
Affiliation(s)
- Huimin Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Yachun Gu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Zili Lv
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, China.
| | - Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
8
|
Zarour K, Zeid AF, Mohedano ML, Prieto A, Kihal M, López P. Leuconostoc mesenteroides and Liquorilactobacillus mali strains, isolated from Algerian food products, are producers of the postbiotic compounds dextran, oligosaccharides and mannitol. World J Microbiol Biotechnol 2024; 40:114. [PMID: 38418710 PMCID: PMC10901973 DOI: 10.1007/s11274-024-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 μg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.
Collapse
Affiliation(s)
- Kenza Zarour
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Ahmed Fouad Zeid
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Alicia Prieto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Mebrouk Kihal
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain.
| |
Collapse
|
9
|
Simionescu N, Petrovici AR. Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants (Basel) 2024; 13:165. [PMID: 38397763 PMCID: PMC10886145 DOI: 10.3390/antiox13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, H. sabdariffa L. anthocyanin extracts protect LAB and support their development. This study uncovers for the first time, the antioxidant profile of Weissella confusa PP29 probiotic media and focuses on elevating its impressive antioxidant attributes by synergistically integrating H. sabdariffa L. anthocyanin extract. The multifaceted potential of this innovative approach is explored and the results are remarkable, allowing us to understand the protective capacity of the fermented product on the intestinal mucosa. The total phenolic content was much lower at the end of the fermentation process compared to the initial amount, confirming their LAB processing. The DPPH radical scavenging and FRAP of the fermented products were higher compared to ascorbic acid and antioxidant extracts, while superoxide anion radical scavenging and lipid peroxidation inhibitory activity were comparable to that of ascorbic acid. The antioxidant properties of the fermented products were correlated with the initial inoculum and anthocyanin concentrations. All these properties were preserved for 6 months, demonstrating the promising efficacy of this enriched medium, underlining its potential as a complex functional food with enhanced health benefits.
Collapse
Affiliation(s)
- Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Anca-Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
10
|
Boumaza K, Marir R. Astonishing emulsifying properties of a novel exopolysaccharide produced from Bacillus velezensis BABA50. Nat Prod Res 2024:1-7. [PMID: 38217479 DOI: 10.1080/14786419.2023.2301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Microbial exopolysaccharides (EPSs) are currently under intensive research in various applications. However, studies on EPS from Bacillus velezensis are rare and the emulsifying properties of this EPS have not been studied previously. An EPS produced by a novel B. velezensis BABA50 strain isolated from an Algerian hot spring was characterised. The results of structural, morphological and thermal analyses showed a heteropolymeric structure containing galactose, glucose, glucuronic acid and N-acetyl glucosamine. Analyses revealed the presence of carbonyl and hydroxyl groups, branched and highly porous structure and relevant thermal stability compared to other EPSs with a high degradation temperature of 260 °C and 38% of residual mass at 800 °C. EPS from B. velezensis BABA50 presents distinct polymer in terms of structure and composition compared to previously described EPS with excellent emulsifying and antioxidant activities; this EPS holds great potential in the food and cosmetic industries as a thermostable emulsifier and antioxidant agent.
Collapse
Affiliation(s)
- Khedidja Boumaza
- Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendili, Constantine, Algeria
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendili, Constantine, Algeria
| | - Rafik Marir
- Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendili, Constantine, Algeria
| |
Collapse
|
11
|
Gu J, Jiao Z, Wang T, Zhang B, Zhao H. Glucans with Different Degrees of Polymerization from Leuconostoc mesenteroides CICC6055: Analysis of Physicochemical Properties and Intestinal Prebiotic Function. Int J Mol Sci 2023; 25:258. [PMID: 38203433 PMCID: PMC10779386 DOI: 10.3390/ijms25010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This study explored the physicochemical properties and prebiotic activities of glucans and oligoglucans. Oligoglucans were obtained through the fermentation of Leuconostoc mesenteroides CICC6055 and the glucansucrase of strain CICC6055, while glucans were obtained only through fermentation. Thin-layer chromatography and high-performance liquid chromatography identified enzymatically synthesized oligoglucans with a higher yield. Differential scanning calorimetry and derivative thermogravimetry analyses revealed the heat resistance of the glucans and oligoglucans at 280-300 °C. Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses demonstrated that their main chains were linked with α-1,6-glycosidic bonds accompanied by glucose residue branching. In vitro fermentation experiments demonstrated that they not only improved the contents of short-chain fatty acids but also raised the abundance of predominant flora, such as Bacteroides, Firmicutes, Verrucomicrobia, and Proteobacteria. These results implicate glucansucrase as an efficacious tool for the enzyme synthesis of oligoglucans. Furthermore, both polysaccharides with different degrees of polymerization may be beneficial in maintaining a healthy human gut.
Collapse
Affiliation(s)
| | | | | | | | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (J.G.); (Z.J.); (T.W.); (B.Z.)
| |
Collapse
|
12
|
Wang W, Liu Z, Zhang Y, Guo Z, Liu J, Li S, Huang J, Geng J, Zhang F, Guo Q. Diversity recovery and probiotic shift of gastric microbiota in functional dyspepsia patients after Helicobacter pylori eradication therapy. Front Microbiol 2023; 14:1288920. [PMID: 38029178 PMCID: PMC10663309 DOI: 10.3389/fmicb.2023.1288920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of Helicobacter pylori eradication on gastric mucosa-colonizing microbes in patients with functional dyspepsia (FD) remain unclear. Here, we explored microbial variation induced by H. pylori infection and eradication treatment in FD patients. Gastric microbial abundance and diversity were significantly reduced in the H. pylori-infected FD patients. Eradication treatment increased alpha and beta diversity of gastric mucosa-colonizing microbes, and promoted the expansion of several probiotic microbes, such as Leuconostoc mesenteroides, which exhibited a matched antagonistic performance against H. pylori. Significant variation was observed in gastric mucosa-colonizing microbes between H. pylori-positive and H. pylori-negative FD patients. Eradication treatment induced microbial diversity recovery and may provide sufficient nutrition and space for probiotic microbes, such as Leuconostoc mesenteroides.
Collapse
Affiliation(s)
- Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhang
- Department of Gastroenterology, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiping Guo
- Department of Gastroenterology, Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jieyu Liu
- Department of Gastroenterology, Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Siyun Li
- Department of Gastroenterology, Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jihua Huang
- Department of Gastroenterology, Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fan Zhang
- Department of Gastroenterology, Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Guo
- Department of Gastroenterology, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Cui Y, Dong S, Qu X. New progress in the identifying regulatory factors of exopolysaccharide synthesis in lactic acid bacteria. World J Microbiol Biotechnol 2023; 39:301. [PMID: 37688654 DOI: 10.1007/s11274-023-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The exopolysaccharides (EPSs) of lactic acid bacteria (LAB) have presented various bioactivities and beneficial characteristics, rendering their vast commercial value and attracting a broad interest of researchers. The diversity of EPS structures contributes to the changes of EPS functions. However, the low yield of EPS of LAB has severely limited these biopolymers' comprehensive studies and applications in different areas, such as functional food, health and medicine fields. The clarification of biosynthesis mechanism of EPS will accelerate the synthesis and reconstruction of EPS. In recent years, with the development of new genetic manipulation techniques, there has been significant progress in the EPS biosynthesis mechanisms in LAB. In this review, the structure of LAB-derived EPSs, the EPS biosynthesis basic pathways in LAB, the EPS biosynthetic gene cluster, and the regulation mechanism of EPS biosynthesis will be summarized. It will focus on the latest progress in EPS biosynthesis regulation of LAB and provide prospects for future related developments.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shiyuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
14
|
Afreen A, Ahmed Z, Khalid N. Optimization, fractional characterization, and antioxidant potential of exopolysaccharides from Levilactobacillus brevis NCCP 963 isolated from "kanji". RSC Adv 2023; 13:19725-19737. [PMID: 37396834 PMCID: PMC10311403 DOI: 10.1039/d2ra07338b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
A novel exopolysaccharide (EPS) was obtained from Levilactobacillus brevis NCCP 963 isolated from a black carrot drink named "kanji". The culture conditions for maximum EPS yield were explored by the Plackett-Burman (PB) design and response surface methodology (RSM) along with the fractional characterization and antioxidant potential of EPSs. The PB design screened out five significant factors, namely, glucose, sucrose, tryptone, CaCl2, and di-potassium phosphate out of eleven independent factors. The RSM indicated glucose and CaCl2 as significant factors in EPS production and a maximum EPS production of 968.89 mg L-1 was obtained at optimized levels of 10.56% glucose, 9.23% sucrose, 0.75% tryptone, 0.446% CaCl2, and 0.385% K2HPO4. A R2 value above 93% indicates higher variability, depicting the validity of the model. The obtained EPS has a molecular weight of 5.48 × 104 Da and is a homopolysaccharide in nature with glucose monosaccharides. FT-IR analysis showed significant band stretching of C-H, O-H, C-O and C-C and indicated the β-glucan nature of EPSs. The comprehensive antioxidant investigation showed significant in vitro DPPH, ABTS, hydroxyl, and superoxide scavenging capacity with EC50 values of 1.56, 0.31, 2.1, and 6.7 mg mL-1 respectively. Curd formation from the resulting strain prevented syneresis.
Collapse
Affiliation(s)
- Asma Afreen
- Department of Environmental Design, Health and Nutritional Sciences, Research Complex, Allama Iqbal Open University Islamabad Pakistan +92 51-9057265
| | - Zaheer Ahmed
- Department of Environmental Design, Health and Nutritional Sciences, Research Complex, Allama Iqbal Open University Islamabad Pakistan +92 51-9057265
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology Lahore 54000 Pakistan
- College of Health Sciences, Adu Dhabi University Adu Dhabi 59911 United Arab Emirates
| |
Collapse
|
15
|
Yang Y, Jiang G, Tian Y. Biological activities and applications of exopolysaccharides produced by lactic acid bacteria: a mini-review. World J Microbiol Biotechnol 2023; 39:155. [PMID: 37039945 DOI: 10.1007/s11274-023-03610-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Exopolysaccharides (EPSs) are naturally occurring high-molecular-weight carbohydrates that have been widely studied for their biological activities, including antioxidant, immunomodulatory, anticancer and gut microbiota regulation activities. Polysaccharides are abundant in nature and can be derived from animals, plants, algae, and microorganisms, but among polysaccharides with potential uses, EPSs from microorganisms have the advantages of a short production cycle, high yield, and independence of production from season and climate and thus have broad prospects. While the safety of the producing microorganism can represent a problem in application of microbial EPSs, lactic acid bacteria (LAB) have been used by humans for thousands of years, and they and their products are generally recognized as safe. This makes LAB excellent sources for exopolysaccharides. EPS-producing LAB are readily found in nature. Through screening of strains, optimization of culture conditions, and improvement of the growth medium, the yield of EPSs from LAB can be increased and the scope of application broadened. This review summarizes EPSs from LAB in terms of structure, function and applications, as well as yield optimization, and introduces recent research on the biological activities and practical applications of LAB EPSs, aiming to provide references for researchers in related areas.
Collapse
Affiliation(s)
- Yi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, PR China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, PR China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China.
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, PR China.
| |
Collapse
|
16
|
Zhao X, Liang Q. Optimization, Probiotic Characteristics, and Rheological Properties of Exopolysaccharides from Lactiplantibacillus plantarum MC5. Molecules 2023; 28:molecules28062463. [PMID: 36985435 PMCID: PMC10058658 DOI: 10.3390/molecules28062463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
This study optimized the exopolysaccharides (EPS) production for Lactiplantibacillus plantarum MC5 (Lp. plantarum MC5) and evaluated the resistance to human simulated digestive juices, antioxidant activity in vitro, and rheological properties of EPS-MC5. The results showed that maximum EPS production of 345.98 mg/L (about 1.5-old greater than the initial production) was obtained at optimal conditions of inoculum size (4.0%), incubation time (30 h), incubation temperature (34.0 °C), and initial pH value (6.40). Furthermore, the resisting-digestion capacity of EPS-MC5 after 180 min in α-amylase, simulated gastric juice (pH 2.0, 3.0, 4.0), and simulated intestinal juice (pH 6.8) was 98.59%, 98.62%, 98.78%, 98.86%, and 98.74%, respectively. In addition, the radical scavenging rates of DPPH•, ABTS•, •OH, and ferric-iron reducing power (OD700) of EPS-MC5 were 73.33%, 87.74%, 46.07%, and 1.20, respectively. Furthermore, rheological results showed that the EPS-MC5 had a higher apparent viscosity (3.01 Pa) and shear stress (41.78 Pa), and the viscoelastic modulus (84.02 and 161.02 Pa at the shear frequency of 100 Hz). These results provide a new insight into the application of EPS in human health and functional foods, which could also improve theoretical guidance for the industrial application of EPS.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
17
|
Wang B, Sun X, Xu M, Wang F, Liu W, Wu B. Structural characterization and partial properties of dextran produced by Leuconostoc mesenteroides RSG7 from pepino. Front Microbiol 2023; 14:1108120. [PMID: 36819025 PMCID: PMC9933128 DOI: 10.3389/fmicb.2023.1108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria possess various bioactivities and potential attractions for scientific exploration and commercial development. An EPS-producing bacterial strain, RSG7, was previously isolated from the pepino and identified as Leuconostoc mesenteroides. Based on the analyses of high-performance size exclusion chromatography, high-performance ion chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and methylation, the RSG7 EPS was identified as a dextran with a molecular weight of 5.47 × 106 Da and consisted of α-(1→6) glycosidic linkages as backbone and α-(1→2), α-(1→3), α-(1→4), and α-(1→6) glycosidic linkages as side chains. Scanning electron microscopy observed a honeycomb-like porous structure of RSG7 dextran, and this dextran formed aggregations with irregular hill-shaped lumps according to atomic force microscopy analysis. Physical-chemical investigations suggested that RSG7 dextran possessed excellent viscosity at high concentration, low temperature, and high pH; showed a superior emulsifying capacity of tested vegetable oils than that of hydrocarbons; and owned the maximal flocculating activity (10.74 ± 0.23) and flocculating rate (93.46 ± 0.07%) in the suspended solid of activated carbon. In addition, the dextran could coagulate sucrose-supplemented milk and implied potential probiotics in vitro. Together, these results collectively describe a valuable dextran with unique characteristics for exploitation in food applications.
Collapse
Affiliation(s)
- Binbin Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xiaoling Sun
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fengyi Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Weizhong Liu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,Weizhong Liu,
| | - Baomei Wu
- School of Life Sciences, Shanxi Normal University, Taiyuan, China,*Correspondence: Baomei Wu,
| |
Collapse
|
18
|
Salimi F, Imanparast S. Characterization of Probiotic Pichia sp. DU2-Derived Exopolysaccharide with Oil-in-Water Emulsifying and Anti-biofilm Activities. Appl Biochem Biotechnol 2022; 195:3345-3365. [PMID: 36585548 DOI: 10.1007/s12010-022-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Probiotic-derived exopolysaccharides are considered as promising sources of carbohydrate with extensive applications in many industries. In the current study, yeast strains were isolated from chicken ingluvies and gizzard samples. According to molecular identification, EPS-producing yeast (Pichia sp. DU2) showed the most similarity to Pichia cactophila (99.67%). Pichia sp. DU2 showed probiotic properties. EPS of Pichia sp. DU2 showed emulsifying activity. The formed emulsions showed 53% (colza oil) and 100% (p-xylene) stability after 24 h. These emulsions were oil-in-water and have stability in the presence of NaCl, KCl, and also acidic and basic conditions. Also, the EPS showed anti-biofilm (29.7-47.6% and 19.06-55.26% against B. cereus and Y. enterocolitica, respectively) and flocculating activities (31.4%). FT-IR showed the presence of various functional groups in EPS structure. Also, its heteropolysaccharide nature was revealed in 1H-NMR and HPLC analysis. This emulsifying EPS showed significant thermal stability and negative zeta potential, which make it a promising carbohydrate for various industries. Finally, according to the predicted model, the maximal EPS production was achieved at reaction time 36 h, pH 6, yeast extract concentration 1.0%, and sucrose concentration 5%. Pichia sp. DU2 with probiotic properties and producing EPS with emulsifying, anti-biofilm, and flocculating activities can be considered as promising yeast strain in various industries like food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran.
| | - Somaye Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
19
|
Bisson G, Comuzzi C, Giordani E, Poletti D, Boaro M, Marino M. An exopolysaccharide from Leuconostoc mesenteroides showing interesting bioactivities versus foodborne microbial targets. Carbohydr Polym 2022; 301:120363. [DOI: 10.1016/j.carbpol.2022.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
20
|
Zhao M, Hu Y, Yao H, Huang J, Li S, Xu H. Sustainable production and characterization of medium-molecular weight welan gum produced by a Sphingomonas sp. RW. Carbohydr Polym 2022; 289:119431. [DOI: 10.1016/j.carbpol.2022.119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
21
|
Chen F, Zhou L, Zhou B, Zhang S, Ma X, Zhou H, Tuo X. Elucidation on the interaction between transferrin and ascorbic acid: A study based on spectroscopic analysis, molecular docking technology, and antioxidant evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Allaith SA, Abdel-aziz ME, Thabit ZA, Altemimi AB, Abd El-Ghany K, Giuffrè AM, Al-Manhel AJA, Ebrahim HS, Mohamed RM, Abedelmaksoud TG. Screening and Molecular Identification of Lactic Acid Bacteria Producing β-Glucan in Boza and Cider. FERMENTATION-BASEL 2022; 8:350. [DOI: 10.3390/fermentation8080350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.
Collapse
|
23
|
Lucena MDA, Ramos IFDS, Geronço MS, de Araújo R, da Silva Filho FL, da Silva LMLR, de Sousa RWR, Ferreira PMP, Osajima JA, Silva-Filho EC, Rizzo MDS, Ribeiro AB, da Costa MP. Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties. Molecules 2022; 27:3895. [PMID: 35745016 PMCID: PMC9231297 DOI: 10.3390/molecules27123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications.
Collapse
Affiliation(s)
- Monalisa de Alencar Lucena
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Igor Frederico da Silveira Ramos
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Maurycyo Silva Geronço
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Ricardo de Araújo
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | | | - Luís Manuel Lopes Rodrigues da Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal;
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Josy Anteveli Osajima
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Edson Cavalcanti Silva-Filho
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Márcia dos Santos Rizzo
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marcilia Pinheiro da Costa
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
- College of Pharmacy, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| |
Collapse
|
24
|
Zhao X, Liang Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods 2022; 11:foods11111660. [PMID: 35681410 PMCID: PMC9179970 DOI: 10.3390/foods11111660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of probiotic Lactobacillus plantarum MC5 on the quality, antioxidant activity, and storage stability of yogurt, to determine its possible application as a starter in milk fermentation. Four groups of yogurt were made with different proportions of probiotic L. plantarum MC5 and commercial starters. The yogurt samples’ rheological properties, texture properties, antioxidant activity, storage stability, and exopolysaccharides (EPS) content during storage were determined. The results showed that 2:1 and 1:1 yogurt samples (supplemented with L. plantarum MC5) attained the highest EPS content (982.42 mg/L and 751.71 mg/L) during storage. The apparent viscosity, consistency, cohesiveness, and water holding capacity (WHC) of yogurt samples supplemented with L. plantarum MC5 were significantly higher than those of the control group (p < 0.05). Further evaluation of antioxidant activity revealed that yogurt samples containing MC5 starter significantly increased in DPPH, ABTS, OH, and ferric iron-reducing power. The study also found that adding MC5 can promote the growth of Streptococcus thermophilus. Therefore, yogurt containing L. plantarum MC5 had favorable rheological properties, texture, and health effects. The probiotic MC5 usage in milk fermentation showed adequate potential for industrial application.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
25
|
Derdak R, Sakoui S, Pop OL, Cristian Vodnar D, Addoum B, Elmakssoudi A, Errachidi F, Suharoschi R, Soukri A, El Khalfi B. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem X 2022; 14:100305. [PMID: 35520389 PMCID: PMC9062669 DOI: 10.1016/j.fochx.2022.100305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
EPS producing bacteria was isolated and identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5. Optimization was carried out by Response Surface Methodology using Box Behnken Design. The GC–MS, FTIR, and NMR analysis showed that the EPS-SL and EPS-N5 are heteropolysaccharides connected by α-(1 → 6) and -(1 → 3) linkages. Both EPSs has high thermal stability. EPS exhibited appreciable antibacterial and antioxidant activity.
Two exopolysaccharides (EPS) producing strains, isolated from raw donkey milk were identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5 using 16S rDNA sequencing. The Box Benheken design exhibited the highest yield of EPS-SL (672.342 mg/L) produced by SL and of EPS-N5 (901 mg/L) produced by N5. The molecular weight was 1.68×104 for EPS-SL and 1.55×104 Da for EPS-N5. FTIR, NMR and GC–MS analysis showed that the EPS are heteropolysaccharides. The SEM image showed that the EPS-SL was smooth and represented a lotus leaf shape and EPS-N5 revealed a stiff-like, porous appearance and was more compact than EPS-SL. The TGA analyses showed high thermal stability and degradation temperature. Additionally, the two EPSs possessed antibacterial and antioxidant activity, and the EPS-SL had the stronger antioxidant activity. Consequently, these results suggest that the functional and biological properties of EPS-SL and EPS-N5 imply the potential application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez, Morocco
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| |
Collapse
|
26
|
Yu C, Fang Y, Huang W, Lei P, Xu X, Sun D, Wu L, Xu H, Li S. Effect of surfactants on the production and biofunction of Tremella fuciformis polysaccharide through submerged fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Tetragenococcus halophilus SNTH-8. Int J Biol Macromol 2022; 208:288-298. [PMID: 35248612 DOI: 10.1016/j.ijbiomac.2022.02.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 01/14/2023]
Abstract
Tetragenococcus halophilus exopolysaccharides (THPS) are metabolites released by T. halophilus SNTH-8 to resist a high-salt environment. Although many studies have investigated the mechanisms underlying salt tolerance shown by T. halophilus, structural characteristics as well as antioxidant and emulsifying capacities of THPS remain unclear. In this study, we isolated and purified two components, THPS-1 and THPS-2, from T. halophilus SNTH-8. Purified THPS-1 and THPS-2 were composed of arabinose, xylose, fucose, galactose, glucose, and glucuronic acid at a molar ratio of 1.66:38.95:2.11:26.12:29.73:1.43 and 0.46:40.3:0.54:30.8:1.36:25.54, respectively. The average molecular weights of THPS-1 and THPS-2 were 14.98 kDa and 21.03 kDa, respectively. Moreover, the structures of THPS-1 and THPS-2 were investigated via fourier-transform infrared spectroscopy(FT-IR), nuclear magnetic resonance spectroscopy(NMR), scanning electron microscopy(SEM), and methylation analysis. THPS-1 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl, α-D-(1,6)-Glc and α-D-Xyl as the terminal, while THPS-2 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl and β-D-GlcA as the terminal. The branches were identified as β-D-(1,4,6)-Gal and β-D-(1,6)-Gal. Both THPS-1 and THPS-2 exhibited high antioxidant and emulsifying capacities. Overall, our structural analysis of THPS may further enhance research on natural emulsifiers and antioxidants.
Collapse
|
28
|
Zhang M, Zeng S, Hao L, Yao S, Wang D, Yang H, Wu C. Structural characterization and bioactivity of novel exopolysaccharides produced by Tetragenococcus halophilus. Food Res Int 2022; 155:111083. [DOI: 10.1016/j.foodres.2022.111083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/07/2023]
|
29
|
Jiang G, He J, Gan L, Li X, Tian Y. Optimization of Exopolysaccharides Production by Lactiplantibacillus pentosus B8 Isolated from Sichuan PAOCAI and Its Functional Properties. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Yang X, Ren Y, Li L. The relationship between charge intensity and bioactivities/processing characteristics of exopolysaccharides from lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Abstract
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
Collapse
|
34
|
Wang L, Gu Y, Zheng X, Zhang Y, Deng K, Wu T, Cheng H. Analysis of physicochemical properties of exopolysaccharide from Leuconostoc mesenteroides strain XR1 and its application in fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Sun L, Yang Y, Lei P, Li S, Xu H, Wang R, Qiu Y, Zhang W. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11. Carbohydr Polym 2021; 261:117872. [PMID: 33766359 DOI: 10.1016/j.carbpol.2021.117872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Pantoea alhagi exopolysaccharides (PAPS) have been shown to enhance crop resistance to abiotic stress. However, physicochemical properties and structure of PAPS have not yet been analyzed. In this study, two PAPSs, named PAPS1 and PAPS2, were isolated and purified from the P. alhagi NX-11. The results showed PAPS1 and PAPS2 were composed of glucose, galactose, glucuronic acid, glucosamine and mannose with average molecular weight of 1.326 × 106 Da and 1.959 × 106 Da, respectively. Moreover, the structure of PAPS1 and PAPS2 was investigated by FT-IR and NMR analysis. PAPS1 was identified to have the backbone structure of →4)-β-D-GlcpA-(1→2)-α-D-Galp-(1→3)-β-D-Galp-(1→3)-β-D-GlcpN- (1→3)-α-D-Galp-(1→3)-β-D-Galp-(1→. PAPS2 had the backbone structure of →4)-β-D-GlcpA-(1→2)-α-D-Galp-(1→3)-β-D-Glcp-(1→3)-β-D-GlcpN-(1→3)-α-D-Galp-(1→3)-α-D-GlcpN-(1→. In addition, PAPS1 and PAPS2 had moderate antioxidant and emulsifying capacities. Overall, the structure analysis of PAPS may point out the direction for the subsequent study of PAPS-mediated microbial and plant interactions, and further exploration of the application of PAPS.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yanbo Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen Zhang
- Hubei Sanning Chemical Industry CO., Ltd, Yichang, 443200, China
| |
Collapse
|
36
|
Wu J, Yan D, Liu Y, Luo X, Li Y, Cao C, Li M, Han Q, Wang C, Wu R, Zhang L. Purification, Structural Characteristics, and Biological Activities of Exopolysaccharide Isolated From Leuconostoc mesenteroides SN-8. Front Microbiol 2021; 12:644226. [PMID: 33841368 PMCID: PMC8033024 DOI: 10.3389/fmicb.2021.644226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel exopolysaccharide (EPS) was extracted from Leuconostoc mesenteroides Shen Nong's (SN)-8 which can be obtained from Dajiang. After the purification step, EPS-8-2 was obtained with molecular weights of 1.46 × 105 Da. The structural characterization of EPS indicated that the EPS belonged to the class polysaccharide, mainly composed of glucan and also contained certain mannose residues that were found to be connected by α-1,6 glycosidic bonds. Moreover, the results demonstrated that EPS displayed a significant capacity to scavenge free radical to some extent, and this anti-oxidant potential was found to be concentration dependent. The results further revealed that EPS displayed a significant inhibitory potential on the growth of HepG2 cells by promoting apoptosis and induced cell cycle arrest in G1 and G2 phases. Overall, these results suggested that EPS can be explored as a possible anti-cancer agent.
Collapse
Affiliation(s)
- Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chengxu Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qi Han
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Szutowska J, Gwiazdowska D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch Microbiol 2020; 203:975-988. [PMID: 33104821 PMCID: PMC7965858 DOI: 10.1007/s00203-020-02095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of the paper was to analyse changes in lactic acid bacteria (LAB) populations during spontaneous fermentation of green curly kale juice (Brasicca oleracea L. var. acephala L.) and to determine the probiotic potential of LAB isolates. The analyses revealed that changes in LAB populations were specific for spontaneously fermented vegetable juices. The initial microbiota, composed mostly of Leuconostoc mesenteroides bacteria, was gradually replaced by Lactobacillus species, mainly Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus coryniformis. Screening tests for the antimicrobial properties and antibiotic susceptibility of isolates allowed for the selection of 12 strains with desirable characteristics. L. plantarum isolates were characterized by the widest spectrum of antimicrobial interactions, both towards Gram-positive and Gram-negative bacteria. Also, L. plantarum strains exhibited the best growth abilities under low pH conditions, and at different NaCl and bile salt concentrations. All strains showed different levels of antibiotic sensitivity, although they were resistant to vancomycin and kanamycin. The present study has shown that bacterial isolates obtained from spontaneously fermented kale juice could constitute valuable probiotic starter cultures, which may be used in fermentation industry.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland
| |
Collapse
|
38
|
Li M, Ma F, Li R, Ren G, Yan D, Zhang H, Zhu X, Wu R, Wu J. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities. Int J Biol Macromol 2020; 160:979-990. [DOI: 10.1016/j.ijbiomac.2020.05.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
|