1
|
Elsayed EH, Al-Wahaib D, Ali AED, Abd-El-Nabey BA, Elbadawy HA. Synthesis, characterization, DNA binding interactions, DFT calculations, and Covid-19 molecular docking of novel bioactive copper(I) complexes developed via unexpected reduction of azo-hydrazo ligands. BMC Chem 2023; 17:159. [PMID: 37986180 PMCID: PMC10662581 DOI: 10.1186/s13065-023-01086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
In this work, we focused on the 3rd goal of the sustainable development plan: achieving good health and supporting well-being. Two redox-active hydrazo ligands namely, phenylcarbonohydrazonoyldicyanide (PCHD) and pyridin-4-ylcarbonohydrazonoyl-dicyanide (PyCHD), and their copper(I) complexes have been synthesized and characterized. The analytical data indicates the formation of copper(I) complexes despite starting with copper(II) perchlorate salt. The 1H-NMR and UV-visible spectral studies in DMSO revealed that PyCHD mainly exists in its azo-form, while PCHD exists in azo ↔ hydrazo equilibrium form, and confirmed the copper(I) oxidation state. XPS, spectral and electrochemistry data indicated the existence of copper(I) valence of both complexes. Cyclic voltammetry of PCHD and its copper(I) complex supported the reduction power of the ligand. The antimicrobial activity, cytotoxicity against the mammalian breast carcinoma cell line (MCF7), and DNA interaction of the compounds are investigated. All compounds showed high antimicrobial, and cytotoxic activities, relative to the standard drugs. Upon studying the wheat DNA binding, PCHD and PyCHD were found to bind through external contacts, while both [Cu(PCHD)2]ClO4.H2O and [Cu(PyCHD)2]ClO4.H2O were intercalated binding. In-silico molecular docking simulations against Estrogen Receptor Alpha Ligand Binding Domain (ID: 6CBZ) were performed on all produced compounds and confirmed the invitro experimentally best anticancer activity of [Cu(PyCHD)2]ClO4.H2O. The molecular docking tests against SARS-CoV-2 main protease (ID: 6 WTT) showed promising activity in the order of total binding energy values: [Cu(PCHD)2]ClO4.H2O > [Cu(PyCHD)2]ClO4.H2O > PCHD > PyCHD.
Collapse
Affiliation(s)
- Eman Hassan Elsayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dhuha Al-Wahaib
- Chemistry Department, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Ali El-Dissouky Ali
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hemmat A Elbadawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
4
|
L-Selenocysteine induced HepG-2 cells apoptosis through reactive oxygen species-mediated signaling pathway. Mol Biol Rep 2022; 49:8381-8390. [PMID: 35716289 DOI: 10.1007/s11033-022-07655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Currently, Liver cancer is the fifth most common tumor and the second most important reason for cancer-related death in the world. However, there are still many limitations of the clinical treatment of liver cancer, and new treatment options are clearly needed. Fortunately, studies have shown that L-Selenocysteine has a certain effect on cancer. This study was to investigate the effects of L-Selenocysteine on the inhibition of cell proliferation and the promotion of apoptosis of HepG-2 cells through ROS mediated fine signaling pathway. MATERIALS AND METHODS CCK-8 assay was applied to evaluating the cytotoxic effect of L-Selenocysteine on HepG-2 cells. Electron microscopy, flow cytometry and Western Blot was utilization in further researching cells signaling pathways. RESULTS The growth of HepG-2 cells was inhibited by L-selenocysteine treatment in a dose-dependent manner. The cell viability decreased to 52.20%, 43.20% and 30.83% under the treatment of 4, 8, 16 µM L-selenocysteine, respectively. L-Selenocysteine had higher cytotoxicity towards HepG-2 cells than normal cells. L-Selenocysteine can induce the apoptosis of HepG-2 cells by increasing the DNA fragmentation, and activating the Caspase-3. In addition, it was found that the mechanism of the induction to HepG-2 cell apoptosis by L-Selenocysteine was closely related to the overproduction of ROS and promoted apoptosis through the Bcl-2 signaling pathway. CONCLUSIONS Our data suggest that L-selenocysteine may cause mitochondrial damage and subsequently stimulate ROS production. ROS can damage cellular DNA and mediate the production of Casapase-8, Bid, Bcl-2 and other proteins, affecting downstream signaling pathways, and ultimately induced apoptosis.
Collapse
|
5
|
Elhag M, Abdelwahab HE, Mostafa MA, Yacout GA, Nasr AZ, Dambruoso P, El Sadek MM. One pot synthesis of new cross-linked chitosan-Schiff' base: Characterization, and anti-proliferative activities. Int J Biol Macromol 2021; 184:558-565. [PMID: 34174299 DOI: 10.1016/j.ijbiomac.2021.06.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Four novel chitosan hydrogels were successfully synthesized through the cross-linking reaction of chitosan with different concentrations of ethyl 5-(3,5-dihydroxy-1,4-dioxan-2-yl)-2-methylfuran-3-carboxylate. Their structures were confirmed by Fourier transform infrared spectroscopy (FT-IR), 13C Cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS 13C NMR), ultraviolet-visible spectroscopy, thermogravimetric analysis (TGA, DTA), and X-ray diffraction (XRD). Cytotoxicity on hepatocellular carcinoma (HepG-2) cell line and a normal African green monkey kidney (Vero) cell line were studied using the MTT assay. The resultant hydrogels showed a good inhibitory effect comparing to the un-modified parent; the hydrogels with the lowest degree cross-linking (0.125 and 0.25 mol cross-linker per one chitosan residue) showed potent anticancer activity in the HepG2 cells with IC50 of 57.9 and 80.9 μg/ml, respectively. These results show that the newly synthesized cross-linked chitosan derivatives demonstrated more selectivity to the HepG2 than the Vero cells, indicating its potential for Investigation in the cure of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohammed Elhag
- Chemistry Department, Faculty of Science, Damnhour University, 22511 Damnhour, Egypt
| | - Huda E Abdelwahab
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt; Institute of Graduate Studies and Research (IGSR), Alexandria University, 21526 Alexandria, Egypt
| | - Mohamed A Mostafa
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt
| | - Galila A Yacout
- Biochemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt
| | - Adel Z Nasr
- Chemistry Department, Faculty of Science, Damnhour University, 22511 Damnhour, Egypt
| | - Paolo Dambruoso
- Institute of Organic Synthesis and Photoreactivity, National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Mohamed M El Sadek
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt.
| |
Collapse
|