1
|
Chandrasekar CM, Carullo D, Saitta F, Krishnamachari H, Bellesia T, Nespoli L, Caneva E, Baschieri C, Signorelli M, Barbiroli AG, Fessas D, Farris S, Romano D. Valorization of citrus peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: An in-depth investigation. Carbohydr Polym 2024; 344:122539. [PMID: 39218557 DOI: 10.1016/j.carbpol.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.
Collapse
Affiliation(s)
- Chandra Mohan Chandrasekar
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Daniele Carullo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Francesca Saitta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | | | - Tommaso Bellesia
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Luca Nespoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Carlo Baschieri
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Alberto Giuseppe Barbiroli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
2
|
Chen M, Li D, Zhang T, Sun Y, Liu R, Sun T. A mini-review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Aralia elata (Miq.) Seem. Int J Biol Macromol 2024; 277:134572. [PMID: 39122067 DOI: 10.1016/j.ijbiomac.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In recent years, the isolation, purification, structural characterization of plant polysaccharides from natural resources have arrested widespread attention. Aralia elata (Miq.) Seem (A. elata) belongs to the Aralia genus of the Araliaceae family, which is one of the most popular edible mountain vegetables in East Asia. A. elata has been widely distributed in China, particularly in Liaoning, Jilin, and Heilongjiang provinces in northeast China, in which it has been used as a traditional herbal medicine for thousands of years to treat various diseases, such as hepatitis and rheumatoid arthritis. A. elata polysaccharides (AEPs) are one of the major active ingredients of A. elata, the monosaccharide composition of which consist primarily of Gal, Glc, Man, Ara, and Rha, with molecular weights ranging from 1.56 × 104 Da to 1.12 × 105 Da. AEPs have attracted worldwide attention owing to their various biological activities, including antioxidant activity, antitumor activity and hepatoprotection. The present review aims to comprehensively summarize the research advances on the polysaccharides isolated from A. elata, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities over the past few decades. This review would establish a solid foundation for further development and application in the field of AEPs.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Deng RX, Zheng YY, Liu DJ, Liu JY, Zhang MN, Xi GY, Song LL, Liu P. The effect of ultrasonic power on the physicochemical properties and antioxidant activities of frosted figs pectin. ULTRASONICS SONOCHEMISTRY 2024; 106:106883. [PMID: 38703594 PMCID: PMC11081804 DOI: 10.1016/j.ultsonch.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.
Collapse
Affiliation(s)
- Rui-Xue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yi-Ying Zheng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Dong-Jie Liu
- Ansteel Beijing Research Institute CO., LTD., Changping, Beijing 102209, China
| | - Jing-Yi Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Meng-Nan Zhang
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guang-Yuan Xi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lu-Lu Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| |
Collapse
|
4
|
Huang L, Sun Q, Li Q, Li X. Screening and characterization of an anti-inflammatory pectic polysaccharide from Cucurbita moschata Duch. Int J Biol Macromol 2024; 264:130510. [PMID: 38447847 DOI: 10.1016/j.ijbiomac.2024.130510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 → and →4)-α-D-GalpA-(1 → 2,4)-α-L-Rhap-(1 → as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.
Collapse
Affiliation(s)
- Linlin Huang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China
| | - Qi Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Li
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
5
|
Li XP, Shen WH, Zhou LL, Huang QY, Cong RP, Zheng LP, Wang JW. Lipopolysaccharides from a Shiraia fruiting body-associated bacterium elicit host fungal hypocrellin A biosynthesis through nitric oxide generation. Carbohydr Polym 2024; 324:121498. [PMID: 37985049 DOI: 10.1016/j.carbpol.2023.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Hypocrellin A (HA) is an excellent perylenequinone photosensitizer from Shiraia fruiting bodies. A dominant bacterium Pseudomonas fulva SB1 in the fruiting body was found to promote HA biosynthesis. The bacterial LPS were purified and the O-specific polysaccharide (OPS) consisted of rhamnose (Rha), galactose (Gal) and N-acetyl-galactosamine (GalNAc) with an average molecular weight of 282.8 kDa. Although the OPS composing of Rhap and Galp backbone showed elicitation capability on fungal HA accumulation, the highest HA production (303.76 mg/L) was achieved by LPS treatment at 20 μg/mL on day 3 of the mycelium culture. The generation of nitric oxide (NO) in Shiraia mycelia was triggered by LPS, which was partially blocked by inhibitors of nitric oxide synthase (NOS) and nitrate reductase (NR), leading to the depressed HA production. Transcriptome analysis revealed that NO mediated LPS-induced HA production via upregulating the expressions of critical genes associated with central carbon metabolism and downstream HA biosynthesis genes. This is the first report of LPS-induced NO to regulate fungal secondary metabolite production, which provides new insights on the role of bacterial LPS in bacterium-fungus interactions and an effective strategy to enhance hypocrellin production.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
He D, Zeng L, Chen P. Research progress in pharmacological effects of Aralia elata. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:616-626. [PMID: 37916310 PMCID: PMC10630058 DOI: 10.3724/zdxbyxb-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/08/2023]
Abstract
The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.
Collapse
Affiliation(s)
- Dahong He
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Peng Chen
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Liang J, Rao ZH, Jiang SL, Wang S, Kuang HX, Xia YG. Structure of an unprecedent glucuronoxylogalactoglucomannan from fruit bodies of Auricularia auricula-judae (black woody ear). Carbohydr Polym 2023; 315:120968. [PMID: 37230634 DOI: 10.1016/j.carbpol.2023.120968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
An unprecedent glucuronoxylogalactoglucomannan (GXG'G″M), ME-2 (Mw, 2.60 × 105 g/mol; O-acetyl % = 16.7 %), was isolated and purified from water extracts of Auricularia auricula-judae (black woody ear). Firstly, due to much higher O-acetyl contents, we prepared its fully deacetylated products (dME-2; Mw, 2.13 × 105 g/mol) for convenient structure survey. The repeating structure-unit of dME-2 was readily proposed based on Mw determination, monosaccharide compositions, methylation analysis, free-radical degradation and 1/2D NMR spectroscopy. The dME-2 was identified as a highly branched polysaccharide with an average of 10 branches per 10 sugar backbone units. The backbone was only repeating →3)-α-Manp-(1→ residues, substituted at the C-2, C-6 and C-2,6 positions. The side chains included β-GlcAp-(1→, β-Xylp-(1→, α-Manp-(1→, α-Galp-(1→ and β-Glcp-(1→. Secondly, the complex substituted positions of O-acetyl groups in ME-2 were determined to be at C-2, C-4, C-6 and C-4,6 in the backbone and at C-2 and C-2,3 in some side chains. Finally, the anti-inflammatory activity of ME-2 was preliminarily explored on LPS-stimulated THP-1 cells. The above date not only provided the first example for structural studies of GXG'G″M type polysaccharides, but also facilitated development and application of black woody ear polysaccharides as medicinal agents or functional dietary supplements.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Zi-Hao Rao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
8
|
Huang YX, Liang J, Chai JH, Kuang HX, Xia YG. Structure of a highly branched galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2023; 313:120844. [PMID: 37182946 DOI: 10.1016/j.carbpol.2023.120844] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A novel galacturonoglucan, named SCP-1, is isolated and purified from Schisandra chinensis fruits. The structure of SCP-1 is systematically investigated by a combination of monosaccharide compositions, absolute Mw, methylation analysis, partial acid hydrolysis, isoamylase degradations, and nuclear magnetic resonance spectroscopy. The structure of SCP-1 is theoretically described as follows: (i) Glc and GalA in a molar ratio of 17:3; (ii) → 4)-α-Glcp-(1→, →4,6)-α-Glcp-(1→, →3,4,6)-α-Glcp-(1→, α-Glcp-(1→, →4)-α-GalAp-6-OMe-(1→, α-GalAp-6-OMe-(1→, β-Glcp-(1→, →6-)-β-Glcp-(1 → and →3,4)-β-Glcp-(1 → in a molar ratio of 48:5:3:3:10:5:12:5:9; (iii) a repeating unit of →4)-α-Glcp-(1 → as a backbone with branched points at C-3 and C-6, substituted by different types of acidic and neutral side chains to form multiple branches; and (iv) a rigid rod configuration deduced from α value of 1.26 in Mark-Houwink equation ([η] = kMα). Anti-tumor assay investigated the effects of SCP-1 on human HepG2 cancer cell lines in vitro. This is for the first time to report a galacturonoglucan in S. chinensis fruits.
Collapse
|
9
|
Lin B, Deng X, Xu P, Ye Q, Zhao G, Ye M, Wang N. Structural characterization and anti-osteoporosis effect of an arabinomannan from Anemarrhena asphodeloides Bge. Int J Biol Macromol 2023; 231:123324. [PMID: 36657544 DOI: 10.1016/j.ijbiomac.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
To discover the polysaccharide with anti-diabetic osteoporosis (DOP) activity and clarify its structure, an arabinomannan (PAAP-1B) with a molecular weight of 14.0 kDa was isolated from Anemarrhena asphodeloides Bge. using column chromatography. It consists of arabinose, mannose, and galactose in a molar ratio of 6:3:1. PAAP-1B has a backbone composed of 1,5-α-Araf, 1,4-β-Manp, and 1,6-β-Galp residues that are branched at C3 of α-Araf and β-Galp residues. The side chains are T-α-Araf, T-α-Manp, T-β-Galp, and 1,6-β-Galp. PAAP-1B attenuated DOP and reduced ferroptosis in the femurs and tibias of alloxan-induced mice. It also suppressed ferroptosis in advanced glycation end product-induced osteoblasts by decreasing 4-hydroxynonenal, malondialdehyde, mitochondrial reactive oxidative species levels, and lipid peroxidation, while reversing the downregulation of solute carrier family 7 membrane 11 and glutathione expression.
Collapse
Affiliation(s)
- Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Qitao Ye
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China
| | - Guizhi Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Mingli Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
10
|
Ma R, Cao T, An H, Yu S, Ji H, Liu A. Extraction, purification, structure, and antioxidant activity of polysaccharide from Rhodiola rosea. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int J Biol Macromol 2023; 225:241-254. [PMID: 36332822 DOI: 10.1016/j.ijbiomac.2022.10.257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Two neutral polysaccharides (PPP1-1 and PPP1-2) were purified from persimmon peel. PPP1-1 (21.84 kDa) was mainly composed of arabinose (22.92 %), galactose (21.09 %), glucose (35.13 %), and xylose (19.09 %), while PPP1-2 (10.42 kDa) mainly contained arabinose (32.98 %), galactose (20.81 %), glucose (26.86 %), xylose (10.46 %), and mannose (7.63 %). Methylation and NMR spectra analysis demonstrated that the backbone of PPP1-1 appeared to be →6)-α-D-Glcp-(1→, →2,6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Manp-(1→, and α-L-Araf-(1 → residues. The main chain of PPP1-2 was composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →1,2)-α-D-Glcp-(6→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →4,6)-α-D-Glcp-(1→, and →4)-β-D-Manp-(1 → residues and terminal of α-L-Araf-(1 → residue. PPP1-2 exhibited stronger antioxidant activities and better thermal stability than PPP1-1. Our results provided the foundation for further investigating the structure and biological activities of persimmon peel polysaccharides and highlighted their potential to become potential antioxidants in functional food.
Collapse
|
12
|
Wang H, Xu S, Li D, Xie Z. Structural Characterization and Macrophage Polarization-Modulating Activity of a Novel Polysaccharide from Large Yellow Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12565-12576. [PMID: 36154025 DOI: 10.1021/acs.jafc.2c05593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel homogeneous polysaccharide (LYP-S3) that promotes the M2 polarization of macrophages was obtained from large yellow tea by a bioactivity-guided sequential isolation procedure and activity evaluation in the present study. Structural characterization revealed that LYP-S3 has an average molecular weight of 28.6 kDa and is composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid at the molar ratio of 8.08:11.66:11.77:3.96:58.02. The main backbone of LYP-S3 consists of →4)-α-d-GalpA-6-OMe-(1→, β-d-GalpA-(1→, →4)-β-d-Galp-(→1, and →β-d-Galp-(1→, and the branches are composed of α-l-Araf-(→1, →5)-α-l-Araf-(1→, →2,4)-β-l-Rhap-(1→, →2)-β-l-Rhap-(1→, and →4)-β-d-Glcp-(1→. An in vitro bioactivity evaluation assay showed that LYP-S3 remarkably reduced the expression of M1 macrophage markers and increased the expression of M2 macrophage markers. In addition, LYP-S3 inhibited adipocyte differentiation and adipogenesis in 3T3-L1 adipocytes and blocked macrophage migration toward 3T3-L1 adipocytes in the cocultures of bone-marrow-derived monocytes and 3T3-L1 adipocytes. Furthermore, LYP-S3 promoted the M2 polarization of macrophages in cocultures. These findings suggested that LYP-S3 has a potential function in preventing inflammation and obesity.
Collapse
Affiliation(s)
- Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
13
|
Structural determination and pro-angiogenic effect of polysaccharide from the pollen of Typha angustifolia L. Int J Biol Macromol 2022; 222:2028-2040. [DOI: 10.1016/j.ijbiomac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
14
|
Liu F, Wang R, Chen Y, Geng R, Gao H, Wang F, Liu X, Li W. Structural characterization of a pectic polysaccharide from laoshan green tea and its inhibitory effects on the production of NO, TNF- α and IL-6. Nat Prod Res 2022; 37:1797-1805. [PMID: 36083622 DOI: 10.1080/14786419.2022.2121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A novel pectic polysaccharide, named GTPS3-1, was isolated and purified from Laoshan green tea polysaccharide (GTPS) through DEAE Sepharose Fast Flow and Sephacryl S-300 columns, its structure was characterized and its anti-inflammatory activity was explored. GTPS3-1, with a molecular weight of 26.05 kDa, was mainly composed of galacturonic acid, galactose, rhamnose and arabinose in a molar ratio of 4.72:2.5:1.68:1 on the basis of monosaccharide composition. Structural analysis results revealed that GTPS3-1 was a highly branched pectin consisting of →3)-Galp-(1→, →2)-Rhap-(1→, →3,5)-Araf-(1→, →3)-Rhap-(1→, GalpA-(1→, →3,4)-Galp-(1→, →4)-GalpA-(1→, →5)-Araf-(1→, →2,4)-Rhap-(1→, Rhap-(1→ and Araf-(1→ according to FT-IR, methylation and NMR analyses. In addition, GTPS3-1 inhibited the production of NO, TNF-α and IL-6 in a dose-dependent manner, which resulted in the amelioration of inflammatory injury in LPS-induced RAW 264.7 cells. These results would provide a theoretical basis for practical application of the novel polysaccharide as an anti-inflammatory adjuvant.
Collapse
Affiliation(s)
- Fan Liu
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Rongshen Wang
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Ying Chen
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Rui Geng
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Hong Gao
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Feng Wang
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Xiaoxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Wanzhong Li
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| |
Collapse
|
15
|
Effects of non-covalent interactions between pectin and volatile compounds on the flavor release of tomato paste. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yang Z, Liu Z, Xu J, Zhu J, Pu Y, Bao Y. Study on the physicochemical properties and immunomodulatory anti-tumor effect of the Pholiota adiposa polysaccharide. Food Funct 2022; 13:5153-5165. [PMID: 35420612 DOI: 10.1039/d1fo03628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, the extraction, purification, physical and chemical properties, and biological activity of the Pholiota adiposa (PAP) polysaccharide were investigated. One fraction (PAP-1a) of Pholiota adiposa polysaccharides was isolated using DEAE Sepharose™ Fast Flow and Sephacryl™ S-300 High-Resolution columns. The HPLGPC results revealed that the molecular weight of PAP-1a was 16.453 kDa. PAP-1a was composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose and their molar % was 33.41, 0.53, 1.33, 0.07, 0.27, 5.28, 38.31, 0.83, 18.04 and 2.23, respectively. PAP-1a could activate macrophages to secrete NO and cytokines such as TNF-a, IL-6, and IL-12p70. When hepatocellular carcinoma cells (HCCs) and macrophages were co-cultured, it was observed that PAP-1a inhibited the growth of Hep-G2, Hep-3B, and Huh7 via immunoregulation. It triggered cell apoptosis by blocking the cell cycle in the G0/G1 stage. Furthermore, PAP-1a had no direct cytotoxicity against the hepatocyte cell line L02 and macrophages RAW264.7.
Collapse
Affiliation(s)
- Zhongwei Yang
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Third Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Junmo Zhu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
17
|
Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Shen Y, Guo YL, Zhang Y, Li Y, Liang J, Kuang HX, Xia YG. Structure and immunological activity of an arabinan-rich acidic polysaccharide from Atractylodes lancea (Thunb.) DC. Int J Biol Macromol 2022; 199:24-35. [PMID: 34973271 DOI: 10.1016/j.ijbiomac.2021.12.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
An arabinan-rich acidic polysaccharide, named ALP4-2 ([α]20 D = +197.8 (c 1.0 mg/mL, H2O); and Mw = 5.59 × 103 g/mol), was obtained from Atractylodes lancea (Thunb.) DC. ALP4-2 is mainly comprised of Ara along with a small amount of GalA, Gal, Rha, Glc and Xyl. The structure was decorated by glycosidic linkages of α-Araf-(1→, →3)-α-Araf-(1→, →5)-α-Araf-(1→, →3,5)-α-Araf-(1→, →2,4)-α-Rhap-(1→, α-GalAp-(1→, →4)-α-GalAp-6-OMe-(1→, →4)-α-GalAp-6-OMe and β-Galp-(1→ with a ratio of 6:1:7:5:5:1:7:1:4. The structure, configuration and microstructure of ALP4-2 was proposed by comprehensive considerations of results from SEC-MALLS-RID, SEC-HRMS, GC-MS, and 1D/2D NMR spectroscopy. Except for a high methyl ester in full pectin regions, an abundant arabinan moiety is observed in ALP4-2 with highly complex and branched characteristics. The immunoactivity displayed that ALP4-2 can significantly promote phagocytosis of macrophage without cytotoxicity, and stimulate nitric oxide and cytokines (TNF-α, IL-6 and IL-10) release on RAW 264.7.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China; College of Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi 154007, PR China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ye Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
19
|
Xu Y, Liu J, Zeng Y, Jin S, Liu W, Li Z, Qin X, Bai Y. Traditional uses, phytochemistry, pharmacology, toxicity and quality control of medicinal genus Aralia: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114671. [PMID: 34627983 DOI: 10.1016/j.jep.2021.114671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aralia, which belongs to Araliaceae family, is mainly distributed in Asia, such as China, Japan and South Korea. It has a long medicinal history and is widely used in the treatment of various diseases, such as hepatitis, rheumatoid arthritis, bruises, lumps and carbuncles. AIM OF THE STUDY The purpose of this review is to systematically evaluate the traditional uses, phytochemistry, pharmacology, toxicity and quality control of main medicinal plants of Aralia, discusses the application of ethnic medicine, modern scientific research and the relationship between them, and put forward some suggestions to promote the further development and utilization of Aralia. MATERIALS AND METHODS The relevant information on Aralia was collected through electronic databases (PubMed, Web of Science, Science Direct, Springer, CNKI and Wanfang), Chinese herbal classics, Ph.D. and M.Sc. dissertations, Chinese Pharmacopoeia. Plant names were verified by "The Plant List" (http://www.theplantlist.org). The literature cited in this review can be traced back to 1878 to 2021. RESULTS More than 290 chemical constituents have been isolated from the genus Aralia, including triterpenoid saponins, terpenoids, organic acids, flavonoids, polyacetylenes, phenylpropanoids and other constituents. Pharmacological studies have shown that the extracts and compounds of Aralia have a wide range of pharmacological activities, including anti-inflammation, analgesic, anti-tumor, liver protection, protection of cardiovascular and nervous system, regulating substance metabolism, antibacterial, antiviral and antioxidation. CONCLUSIONS The genus Aralia is not only an excellent traditional herbal medicine, but also a source of bioactive molecules with good application prospects. However, the structure-activity relationship, in vivo activity and action mechanism of its bioactive components need to be further studied. In addition, more toxicological and quality control studies are essential to evaluate the efficacy and safety of Aralia as medicine.
Collapse
Affiliation(s)
- Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wentao Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yaolin Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
20
|
Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116688. [PMID: 35386843 PMCID: PMC8981528 DOI: 10.1016/j.ijms.2021.116688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of glycans and glycoconjugates has gained increasing attention in biological fields. Traditional mass spectrometry (MS)-based methods for glycoconjugate analysis are challenged with poor intensity when dealing with complex biological samples. We developed a desalting paper spray mass spectrometry (DPS-MS) strategy to overcome the issue of signal suppression of carbohydrates in salted buffer. Glycans and glycoconjugates (i.e., glycopeptides, nucleotide sugars, etc.) in non-volatile buffer (e.g., Tris buffer) can be loaded on the paper substrate from which buffers can be removed by washing with ACN/H2O (90/10 v/v) solution. Glycans or glycoconjugates can then be eluted and spray ionized by adding ACN/H2O/formic acid (FA) (10/90/1 v/v/v) solvent and applying a high voltage (HV) to the paper substrate. This work also showed that DPS-MS is applicable for direct detection of intact glycopeptides and nucleotide sugars as well as determination of glycosylation profiling of antibody, such as NIST monoclonal antibody IgG (NISTmAb). NISTmAb was deglycosylated with PNGase F to release N-linked oligosaccharides. Twenty-six N-linked oligosaccharides were detected by DPS-MS within a 5-minute timeframe without the need for further enrichment or derivatization. This work demonstrates that DPS-MS allows fast and sensitive detection of glycans/oligosaccharides and glycosylated species in complex matrices and has great potential in bioanalysis.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA, 19477
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
- Department of Environmental and Plant Biology, Ohio University, Athens Ohio, USA, 45701
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| |
Collapse
|
21
|
Zhang Z, Huang X, Li S, Luo K. Determining the Structure and In Vitro Antioxidant Activity of Sulfated Polysaccharides from
Cardamine hupingshanensis. STARCH-STARKE 2021. [DOI: 10.1002/star.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zimu Zhang
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Xiufang Huang
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Shichan Li
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Kai Luo
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| |
Collapse
|
22
|
Li M, Huang X, Zhang Q, Zhou Y, Luo K. Structure of
Cardamine hupingshanensis
No. 2 Polysaccharide (CHP‐2) and Its Effect on Streptozotocin‐induced Diabetic Rats. STARCH-STARKE 2021. [DOI: 10.1002/star.202000250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meidong Li
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Xiufang Huang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Qin Zhang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Yifeng Zhou
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Kai Luo
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| |
Collapse
|
23
|
Zhong C, Liu Z, Zhang X, Pu Y, Yang Z, Bao Y. Physicochemical properties of polysaccharides from Ligusticum chuanxiong and analysis of their anti-tumor potential through immunoregulation. Food Funct 2021; 12:1719-1731. [PMID: 33502414 DOI: 10.1039/d0fo02978e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the extraction, purification, physicochemical properties and biological activity of Ligusticum chuanxiong polysaccharides (LCXPs). Two polysaccharide fractions (Ligusticum chuanxiong [LCX]P-1a and LCXP-3a) were obtained by DEAE Sepharose™ Fast Flow and Sephacryl™S-300 high resolution column chromatography. The results showed that the molecular weight of LCXP-1a and LCXP-3a was 11.159 kDa and 203.486 kDa, respectively. LCXP-1a is composed of rhamnose, glucuronic acid, galacturonic acid, and glucose at a molar percentage of 0.52 : 1.88 : 1.06 : 95.36, But LCXP-3a has another molar percentage of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose of 0.64 : 6.69 : 1.03 : 43.74 : 2.20 : 26.90 : 0.82 : 15.94 : 1.80. Both LCXP-1a and LCXP-3a could stimulate macrophages to produce NO, TNF-α, IL-6, and IL-12p70. Co-culturing macrophages and hepatocellular carcinoma cells showed that LCXP-1a and LCXP-3a inhibited the growth of HepG2 and Hep3B through immunoregulation. They arrested the cell cycle at the G0/G1 phase and promoted apoptosis. Moreover, there was no cytotoxicity to the hepatocyte cell line, LO2. We also noted that the immunomodulatory activity and anti-tumor activity of LCXP-3a were significantly better than those of LCXP-1a. Our data demonstrate that LCXP-3a is potentially a well-tolerated and effective immunomodulatory adjuvant cancer treatment.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zhongwei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
24
|
Kumar M, Tomar M, Saurabh V, Sasi M, Punia S, Potkule J, Maheshwari C, Changan S, Radha, Bhushan B, Singh S, Anitha T, Alajil O, Satankar V, Dhumal S, Amarowicz R, Kaur C, Sharifi-Rad J, Kennedy JF. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydr Polym 2021; 269:118319. [PMID: 34294331 DOI: 10.1016/j.carbpol.2021.118319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Minnu Sasi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 10012, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Bharat Bhushan
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141 004, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Omar Alajil
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR-Central Institute for Research on Cotton Technology, Nagpur 440023, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
25
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
26
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
27
|
Shen Y, Liang J, Guo YL, Li Y, Kuang HX, Xia YG. Ultrafiltration isolation, structures and anti-tumor potentials of two arabinose- and galactose-rich pectins from leaves of Aralia elata. Carbohydr Polym 2021; 255:117326. [DOI: 10.1016/j.carbpol.2020.117326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
|
28
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Structure characterization and in vitro immunomodulatory activities of carboxymethyl pachymaran. Int J Biol Macromol 2021; 178:94-103. [PMID: 33577815 DOI: 10.1016/j.ijbiomac.2021.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
Carboxymethyl pachymaran (CMP) was prepared from Poria cocos polysaccharide by carboxymethylation. Two types of CMP (CMP-1 and CMP-2) were further purified by DEAE-52 anion-exchange chromatography. The structure characteristics and immunomodulatory activities of CMP-1 and CMP-2 were investigated. CMP-1 was determined as β-(1 → 3)-d-glucan. A β-(1 → 3)-d-glucan backbone structure was also found in CMP-2, which was mainly consistent of mannose and glucose, with the mole ratio of 0.03:1. The molecular weight of CMP-1 was 126.1 kDa with a 30.4 nm irregular sphere in distilled water. However, the molecular weight of CMP-2 was 172.6 kDa in a 19.9 nm spherical structure in water solution. Both CMP-1 and CMP-2 had triple helical structure, which can promote the proliferation and the phagocytosis of macrophages. Moreover, CMP-1 and CMP-2 both could improve the secretions of NO, TNF-α and IL-6 by increasing the expression of iNOS, TNF-α and IL-6 mRNA, but CMP-1 exhibited a stronger immunomodulatory ability than that of CMP-2. Our results indicated that CMP-1 and CMP-2 can act as potential immunomodulatory agents.
Collapse
|
30
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|