1
|
Qausain S, Khan FI, Khan MKA. Conserved acidic second shell residue modulates the structure, stability and activity of non-seleno human peroxiredoxin 6. Int J Biol Macromol 2023; 242:124796. [PMID: 37178881 DOI: 10.1016/j.ijbiomac.2023.124796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
1-Cys peroxiredoxin6 (Prdx6) is unique and inducible bifunctional enzyme in the mammalian lungs and plays a role in the progression and inhibition of cancerous cells at different stages. The enzyme possesses two distinct active sites for phospholipase A2 and peroxidase activity. The conserved residues surrounding the peroxidase active site, also called as second shell residues are Glu50, Leu71, Ser72, His79 and Arg155. Since there is no study done about the active site stabilization of the transition state of Prdx6, there are a lot of questions unanswered regarding the Prdx6 peroxidase activity. In order to evaluate the role of second shell conserved residue Glu50, present in close vicinity to peroxidatic active site, we substituted this negatively charged residue with Alanine and Lysine. To explore the effect of mutation on the biophysical parameters, the mutant proteins were compared with Wild-Type by using biochemical, biophysical, and in silico methods. Comparative spectroscopic methods and enzyme activity demonstrate that the Glu50 plays a significant role in maintaining the structure, stability, and function of protein. From the results we conclude that Glu50 significantly controls the structure; stability and may be involved in the active site stabilization of transition state for proper position of diverse peroxides.
Collapse
Affiliation(s)
- Sana Qausain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| |
Collapse
|
2
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Khan FI, Rehman MT, Sameena F, Hussain T, AlAjmi MF, Lai D, Khan MKA. Investigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods. J Mol Recognit 2022; 35:e2958. [PMID: 35347772 DOI: 10.1002/jmr.2958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
Various spectroscopic techniques involving fluorescence spectroscopy, circular dichroism (CD), and computational approaches were used to elucidate the molecular aspects of interaction between the antiepileptic drug topiramate and the multifunctional transport protein bovine serum albumin (BSA) under physiological conditions. Topiramate quenched BSA fluorescence in a static quenching mode, according to the Stern-Volmer quenching constant (Ksv ) data derived from fluorescence spectroscopy for the topiramate-BSA complex. The binding constant was also used to calculate the binding affinity for the topiramate-BSA interaction. Fluorescence and circular dichroism experiments demonstrate that the protein's tertiary structure is affected by the microenvironmental alterations generated by topiramate binding to BSA. To establish the exact binding site, interacting residues, and interaction forces involved in the binding of topiramate to BSA, molecular modeling and simulation approaches were used. According to the MMPBSA calculations, the average binding energy between topiramate and BSA is -421.05 kJ/mol. Topiramate was discovered to have substantial interactions with BSA, changing the structural dynamic and Gibbs free energy landscape patterns.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Fathima Sameena
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| | - Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| |
Collapse
|
4
|
Khan FI, Lobb KA, Lai D. The Molecular Basis of the Effect of Temperature on the Structure and Function of SARS-CoV-2 Spike Protein. Front Mol Biosci 2022; 9:794960. [PMID: 35463957 PMCID: PMC9019816 DOI: 10.3389/fmolb.2022.794960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
The remarkable rise of the current COVID-19 pandemic to every part of the globe has raised key concerns for the current public healthcare system. The spike (S) protein of SARS-CoV-2 shows an important part in the cell membrane fusion and receptor recognition. It is a key target for vaccine production. Several researchers studied the nature of this protein under various environmental conditions. In this work, we applied molecular modeling and extensive molecular dynamics simulation approaches at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the influence of temperatures on the structure, function, and dynamics of the S protein of SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S protein are not accessible to solvent at high temperature. Furthermore, there was no unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other temperatures. Our findings revealed that higher temperatures have little or no influence on the stability and folding of the SARS-CoV-2 S protein.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin A. Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| |
Collapse
|
5
|
Khan FI, Kang T, Ali H, Lai D. Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indication From Molecular Modeling and Simulations. Front Pharmacol 2021; 12:710778. [PMID: 34305617 PMCID: PMC8293383 DOI: 10.3389/fphar.2021.710778] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Development of new drugs is a time-taking and expensive process. Comprehensive efforts are being made globally toward the search of therapeutics against SARS-CoV-2. Several drugs such as remdesivir, favipiravir, ritonavir, and lopinavir have been included in the treatment regimen and shown effective results in several cases. Among the existing broad-spectrum antiviral drugs, remdesivir is found to be more effective against SARS-CoV-2. Remdesivir has broad-spectrum antiviral action against many single-stranded RNA viruses including pathogenic SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). In this study, we proposed that remdesivir strongly binds to membrane protein (Mprotein), RNA-dependent RNA polymerase (RDRP), and main protease (Mprotease) of SARS-CoV-2. It might show antiviral activity by inhibiting more than one target. It has been found that remdesivir binds to Mprotease, Mprotein, and RDRP with -7.8, -7.4, and -7.1 kcal/mol, respectively. The structure dynamics study suggested that binding of remdesivir leads to unfolding of RDRP. It has been found that strong binding of remdesivir to Mprotein leads to decrease in structural deviations and gyrations. Additionally, the average solvent-accessible surface area of Mprotein decreases from 127.17 to 112.12 nm2, respectively. Furthermore, the eigenvalues and the trace of the covariance matrix were found to be low in case of Mprotease-remdesivir, Mprotein-remdesivir, and RDRP-remdesivir. Binding of remdesivir to Mprotease, Mprotein, and RDRP reduces the average motions in protein due to its strong binding. The MMPBSA calculations also suggested that remdesivir has strong binding affinity with Mprotein, Mprotease, and RDRP. The detailed analysis suggested that remdesivir has more than one target of SARS-CoV-2.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tongzhou Kang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Haider Ali
- Faculty of Medicine, International Ala-Too University, Bishkek, Kyrgyzstan
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci 2021; 278:119529. [PMID: 33894270 DOI: 10.1016/j.lfs.2021.119529] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Glomerular podocyte damage is considered to be one of the main mechanisms leading to Diabetic nephropathy (DN). However, the relevant mechanism of podocyte injury is not yet clear. This study aimed to investigate the effect of peroxiredoxin 6 (Prdx6) on the pathogenesis of podocyte injury induced by high glucose (HG). The mouse glomerular podocyte MPC5 was stimulated with 30 nM glucose, and the Prdx6 overexpression vector or specificity protein 1 (Sp1) overexpression vector was transfected into MPC5 cells before the high glucose stimulation. As results, HG treatment significantly reduced the expression of Prdx6 and Sp1 in MPC5 cells. Prdx6 overexpression increased cell viability, while inhibited podocyte death, inflammation and podocyte destruction in HG-induced MPC5 cells. Prdx6 overexpression inhibited HG-induced ROS and MDA production, while restored SOD and GSH activity in MPC5 cells. Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. The improvement effect of Prdx6 on HG-induced podocyte damage could be eliminated by erastin. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Silencing Sp1 could eliminate the effect of Prdx6 on HG-induced podocyte damage. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced DN mice. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis, which may provide new insights for the study of the mechanism of DN.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China.
| | - Yichuan Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Jin-E Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ying Ding
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Yanqiu Shen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Hong Xu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Huiqin Chen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ning Wu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| |
Collapse
|
7
|
Rana M, Arif R, Khan FI, Maurya V, Singh R, Faizan MI, Yasmeen S, Dar SH, Alam R, Sahu A, Ahmad T, Rahisuddin. Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorg Chem 2021; 108:104665. [PMID: 33571809 DOI: 10.1016/j.bioorg.2021.104665] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
N-formyl pyrazoline derivatives (3a-3l) were designed and synthesized via Michael addition reaction through cyclization of chalcones with hydrazine hydrate in presence of formic acid. The structural elucidation of N-formyl pyrazoline derivatives was carried out by various spectroscopic techniques such as 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and elemental analysis. Anticancer activity of the pyrazoline derivatives (3a-3l) was evaluated against human lung cancer (A549), fibrosarcoma cell lines (HT1080) and human primary normal lung cells (HFL-1) by MTT assay. The results of anticancer activity showed that potent analogs 3b and 3d exhibited promising activity against A549 (IC50 = 12.47 ± 1.08 and 14.46 ± 2.76 µM) and HT1080 (IC50 = 11.40 ± 0.66 and 23.74 ± 13.30 µM) but low toxic against the HFL-1 (IC50 = 116.47 ± 43.38 and 152.36 ± 22.18 µM). The anticancer activity of potent derivatives (3b and 3d) against A549 cancer cell line was further confirmed by flow cytometry based approach. DNA binding interactions of the pyrazoline derivatives 3b and 3d have been carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence and viscosity measurements, circular dichroism and cyclic voltammetry. Antioxidant potential of N-formyl pyrazoline derivatives (3a-3l) has been also estimated through DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and H2O2. Results revealed that all the compounds exhibited significant antioxidant activity. In silico molecular modelling and ADMET properties of pyrazoline derivatives were also studied using PyRx software against topoisomerase II receptor with PDB ID: 1ZXM to explore their best hits. MD simulation of 3b and 3d was also carried out with topoisomerase II for structure-function correlation in a protein. HuTopoII inhibitory activity of the analogs (3a-3l) was examined by relaxation assay at varying concentrations 100-1000 µM.
Collapse
Affiliation(s)
- Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rizwan Arif
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, China
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawharlal Nehru University, New Delhi 110067, India
| | - Raja Singh
- Special Centre for Molecular Medicine, Jawharlal Nehru University, New Delhi 110067, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Yasmeen
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sajad Hussain Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Raquib Alam
- Department of Applied Sciences, University Polytechnic, Jamia Millia Islamia, New Delhi 110025, India
| | - Ankita Sahu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
8
|
Khan FI, Hassan F, Anwer R, Juan F, Lai D. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2. Biomolecules 2020; 10:biom10091286. [PMID: 32906690 PMCID: PMC7564321 DOI: 10.3390/biom10091286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: ; Tel.: +86-182-0052-9516
| |
Collapse
|
9
|
Mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Int J Biol Macromol 2020; 161:1496-1505. [PMID: 32771517 DOI: 10.1016/j.ijbiomac.2020.07.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022]
Abstract
Sphingosine kinase 1 (SphK1) plays a significant role in various cellular processes, including cell proliferation, apoptosis, and angiogenesis. SphK1 is considered as an attractive target for drug development owing to its connection with several diseases, including cancer. In the current work, the urea-induced unfolding of SphK1 was performed at pH 8.0 and 25 °C using CD and fluorescence spectroscopy. SphK1 follows a biphasic unfolding transition (N ⇌ I ⇌ D) with an intermediate (I) state populated around 4.0 M urea concentration. The circular dichroism ([θ]222) and fluorescence emission spectra (λmax) of SphK1 with increasing concentrations of urea were analyzed to calculate Gibbs free energy (ΔG0) for both the transitions (N ⇌ I and I ⇌ D). A significant overlap of both the transitions obtained by two spectroscopic properties ([θ]222 and λmax) was observed, indicating that both N ⇌ I and I ⇌ D transition follow two-step equilibrium unfolding pattern. Also, we performed 100 ns molecular dynamics (MD) simulations to get atomistic insights into the structural changes in SphK1 with increasing urea concentrations. Our results showed a consistent pattern of the SphK1 unfolding with increasing urea concentrations. Together, spectroscopic and MD simulation findings provide deep insights into the unfolding mechanism and conformational features of SphK1.
Collapse
|