1
|
Monti A, Scognamiglio PL, Ruvo M, Vitagliano L, Doti N. The Characterization of Multifaceted PREP1 Peptides Provides Insights into Correlations between Spectroscopic and Structural Properties of Amyloid-like Assemblies. Chemistry 2024; 30:e202400846. [PMID: 38682403 DOI: 10.1002/chem.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The widespread ability of proteins and peptides to self-assemble by forming cross-β structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-β association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties. We here demonstrate that the green fluorescence emission of the peptide PREP1[117-132] (λem ~520 nm), can be induced by excitation with UV radiation. The associated unusually large Stokes shift (Δλ ~150 nm) represents, to the best of our knowledge, the first evidence of an internal resonance energy transfer in amyloid-like structures, where the blue emission of some assemblies becomes the excitation radiation for others. Moreover, the characterization of PREP1[117-132] variants provides insights into the sequence/structure and structure/spectroscopic properties relationships. Our data suggests that the green fluorescence is plausibly associated with antiparallel β-sheet states of the peptide whereas parallel β-sheet assemblies are only endowed with blue fluorescence. Notably, the different PREP1[117-132] variants also form assemblies characterized by distinct morphologies. Indeed, the parent peptide and single mutants form compact but structured aggregates whereas most of the double mutants exhibit elongated and highly extended fibers.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Sciences, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| |
Collapse
|
2
|
Rayan B, Barnea E, Khokhlov A, Upcher A, Landau M. Differential fibril morphologies and thermostability determine functional roles of Staphylococcus aureus PSMα1 and PSMα3. Front Mol Biosci 2023; 10:1184785. [PMID: 37469708 PMCID: PMC10353841 DOI: 10.3389/fmolb.2023.1184785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are virulent peptides secreted by staphylococci that undergo self-assembly into amyloid fibrils. This study focuses on Staphylococcus aureus PSMα1 and PSMα3, which share homologous sequences but exhibit distinct amyloid fibril structures. Upon subjecting PSMα1 to an 80°C heat shock, it fibrillates into cross-β structures, resulting in the loss of cytotoxic activity. Conversely, PSMα3 cross-α fibrils undergo reversible disaggregation upon heat shock, leading to the recovery of cytotoxicity. The differential thermostability probably arises from the presence of hydrogen bonds along the β-strands within the β-sheets of the cross-β fibrils. We propose that the breakdown of PSMα3 fibrils into soluble species, potentially co-aggregating with membrane lipids, is crucial for its toxic process and enables the reversible modulation of its biological activity under stress conditions. In contrast, the formation of robust and irreversible cross-β fibrils by PSMα1 corresponds to its role in biofilm stability. These findings emphasize how the unique fibril morphologies and thermostability of PSMα1 and PSMα3 shape their functional roles in various environments of S. aureus.
Collapse
Affiliation(s)
- Bader Rayan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Khokhlov
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
3
|
Balasco N, Diaferia C, Rosa E, Monti A, Ruvo M, Doti N, Vitagliano L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. Int J Mol Sci 2023; 24:8372. [PMID: 37176084 PMCID: PMC10178990 DOI: 10.3390/ijms24098372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-β) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Elisabetta Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| |
Collapse
|
4
|
Smaldone G, Caruso D, Sandomenico A, Iaccarino E, Focà A, Ruggiero A, Ruvo M, Vitagliano L. Members of the GADD45 Protein Family Show Distinct Propensities to form Toxic Amyloid-Like Aggregates in Physiological Conditions. Int J Mol Sci 2021; 22:10700. [PMID: 34639041 PMCID: PMC8509203 DOI: 10.3390/ijms221910700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
The three members (GADD45α, GADD45β, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45β, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45β and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45β, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45β to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.
Collapse
Affiliation(s)
| | - Daniela Caruso
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Annalia Focà
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| |
Collapse
|
5
|
Monti A, Bruckmann C, Blasi F, Ruvo M, Vitagliano L, Doti N. Amyloid-like Prep1 peptides exhibit reversible blue-green-red fluorescence in vitro and in living cells. Chem Commun (Camb) 2021; 57:3720-3723. [PMID: 33729264 DOI: 10.1039/d1cc01145f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PREP1-based peptides form amyloid-like aggregates endowed with an intrinsic blue-green-red fluorescence with an unusual sharp maximum at 520 nm upon excitation with visible light under physiological conditions. The peptide PREP1[117-132], whose sequence does not contain aromatic residues, presents a pH-dependent and reversible fluorescence, in line with its structural transition from β-sheet rich aggregates to α-helix structures. These findings further demonstrate that the non-canonical fluorescence exhibited by amyloids is an articulated phenomenon.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, Naples 80134, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|