2
|
Murphy WA, Beaudoin JJ, Laitinen T, Sjöstedt N, Malinen MM, Ho H, Swaan PW, Honkakoski P, Brouwer KLR. Identification of Key Amino Acids that Impact Organic Solute Transporter α/ β (OSTα/β). Mol Pharmacol 2021; 100:599-608. [PMID: 34599072 PMCID: PMC9132218 DOI: 10.1124/molpharm.121.000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Organic solute transporter α/β (OSTα/β) is a bidirectional bile acid transporter localized on the basolateral membrane of hepatic, intestinal, and renal epithelial cells. OSTα/β plays a critical role in intestinal bile acid reabsorption and is upregulated in hepatic diseases characterized by elevated bile acids, whereas genetic variants in SLC51A/B have been associated with clinical cholestasis. OSTα/β also transports and is inhibited by commonly used medications. However, there is currently no high-resolution structure of OSTα/β, and structure-function data for OSTα, the proposed substrate-binding subunit, are lacking. The present study addressed this knowledge gap and identified amino acids in OSTα that are important for bile acid transport. This was accomplished using computational modeling and site-directed mutagenesis of the OSTα subunit to generate OSTα/β mutant cell lines. Out of the 10 OSTα/β mutants investigated, four (S228K, T229S, Q269E, Q269K) exhibited decreased [3H]-taurocholate (TCA) uptake (ratio of geometric means relative to OSTα/β wild type (WT) of 0.76, 0.75, 0.79, and 0.13, respectively). Three OSTα/β mutants (S228K, Q269K, E305A) had reduced [3H]-TCA efflux % (ratio of geometric means relative to OSTα/β WT of 0.86, 0.65, and 0.79, respectively). Additionally, several OSTα/β mutants demonstrated altered expression and cellular localization when compared with OSTα/β WT. In summary, we identified OSTα residues (Ser228, Thr229, Gln269, Glu305) in predicted transmembrane domains that affect expression of OSTα/β and may influence OSTα/β-mediated bile acid transport. These data advance our understanding of OSTα/β structure/function and can inform future studies designed to gain further insight into OSTα/β structure or to identify additional OSTα/β substrates and inhibitors. SIGNIFICANCE STATEMENT: OSTα/β is a clinically important transporter involved in enterohepatic bile acid recycling with currently no high-resolution protein structure and limited structure-function data. This study identified four OSTα amino acids (Ser228, Thr229, Gln269, Glu305) that affect expression of OSTα/β and may influence OSTα/β-mediated bile acid transport. These data can be utilized to inform future investigation of OSTα/β structure and refine molecular modeling approaches to facilitate the identification of substrates and/or inhibitors of OSTα/β.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Tuomo Laitinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Peter W Swaan
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| |
Collapse
|
3
|
Zhang J, Chi Y, Li S, Gu X, Ye Y. Cloning, homology modeling, heterologous expression and bioinformatic analysis of Ure2pA glutathione S-transferase gene from white rot fungus Trametes gibbosa. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jian Zhang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Yujie Chi
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Shuxuan Li
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Xinzhi Gu
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Yi Ye
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| |
Collapse
|