1
|
Xiong Y, Li W, Qin Z, Su T, Xie X, Ji H. A green extraction technology of lignocellulose from cassava residue by mechanical activation-assisted ternary deep eutectic solvent. Int J Biol Macromol 2024; 281:136339. [PMID: 39383909 DOI: 10.1016/j.ijbiomac.2024.136339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Lignocellulose (LC) is a natural polymer material that holds immense potential for various applications. However, extracting LC from biomass wastes with high-starch content has been challenging due to low selectivity and yield. In this study, LC was prepared from cassava residue (CR) via a combination of mechanical activation pretreatment and a citric acid (CA)-enhanced ternary deep eutectic solvent (TDES) consisting of choline chloride (ChCl), lactic acid (LA), and CA. The mechanical activation reduces the size of CR, greatly promoting the removal ability for starch, lignin and hemicellulose using TDES, and thus improving yield and selectivity of LC through this method. The CA esterified LC to prevent its excessive hydrolysis and increased a significantly higher LC content (82.52 wt%) compared to mechanical activation only and DES without CA, increasing by 6.97 times and 1.26 times, respectively. The extraction temperature significantly affected the structure, composition, thermal stability of LC and the properties of recovered TDES. The LC extracted at 90 °C (LC-90) had the highest cellulose content (82.52 wt%), crystallinity index (44.82 %), and higher degradation temperature (339.7 °C). The properties of the recovered TDES and extraction mechanism were analyzed. This study provides a strategy for the high-value utilization of biomass waste.
Collapse
Affiliation(s)
- Yujia Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Wang Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Tongming Su
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Xinling Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Ji H, Abdalkarim SYH, Shen Y, Chen X, Zhang Y, Shen J, Yu HY. Facile synthesis, release mechanism, and life cycle assessment of amine-modified lignin for bifunctional slow-release fertilizer. Int J Biol Macromol 2024; 278:134618. [PMID: 39151851 DOI: 10.1016/j.ijbiomac.2024.134618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Biomass-based slow-release fertilizers (SRFs) are a sustainable solution for addressing food scarcity, improving fertilizer efficiency, and reducing pollution, whereas they still face complex preparation, high costs, and low release characteristics. This study introduces a simple and innovative approach to producing bifunctional green SRFs with controlled release and conditioning properties for saline soils and harsh environments. The method involves a one-pot preparation of microsphere-structured amine-modified lignin slow-release fertilizer (L-UX) using biomass lignin as the starting material. The L-UX demonstrates an exceptional fertilizer loading rate (66.2 %) and extended slow-release performance (288 h), effectively enhancing the fertilizer's release ability. Compared to traditional fertilizers, the bifunctional L-UX significantly improves soil water retention capacity (824.3 %), plant growth, and germination percentage in challenging soil conditions (133 %). These findings highlight the potential of L-UX as a large-scale controlled-release fertilizer in harsh environments. A life cycle assessment (LCA) was also conducted to evaluate the environmental impact of L-UX from its production to disposal. This revealed that L-UX has a minimal environmental footprint compared to conventional inorganic fertilizers. This study further supports the widespread application of L-UX as an environmentally friendly alternative.
Collapse
Affiliation(s)
- Haibin Ji
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunfei Shen
- Huzhou City Linghu Xinwang Chemical Co., Ltd, Huzhou 313018, China
| | - Xuefei Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yixuan Zhang
- Huzhou City Linghu Xinwang Chemical Co., Ltd, Huzhou 313018, China
| | - Jiayuan Shen
- Huzhou City Linghu Xinwang Chemical Co., Ltd, Huzhou 313018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 Renmin North Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
3
|
Lin CF, Karlsson O, Myronycheva O, Das O, Mensah RA, Mantanis GI, Jones D, Antzutkin ON, Försth M, Sandberg D. Phosphorylated and carbamylated Kraft lignin for improving fire- and biological-resistance of Scots pine wood. Int J Biol Macromol 2024; 276:133734. [PMID: 39002903 DOI: 10.1016/j.ijbiomac.2024.133734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
In this study, Kraft lignin was modified by ammonium dihydrogen phosphate (ADP) and urea for achieving phosphorylation and carbamylation, aiming to protect wood against biological and fire attack. Scots pine (Pinus sylvestris L.) sapwood was impregnated with a water solution containing Kraft lignin, ADP, and urea, followed by heat treatment at 150 °C, resulting in changes in the properties of the Kraft lignin as well as the wood matrix. Infrared spectroscopy, 13C cross-polarisation magic-angle-spinning (MAS) nuclear magnetic resonance (NMR), and direct excitation single-pulse 31P MAS NMR analyses suggested the grafting reaction of phosphate and carbamylate groups onto the hydroxyl groups of Kraft lignin. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the condensed Kraft lignin filled the lumen as well as partially penetrating the wood cell wall. The modified Kraft lignin imparted fire-retardancy and increased char residue to the wood at elevated temperature, as confirmed by limiting oxygen index, microscale combustion calorimetry, and thermogravimetric analysis. The modified wood exhibited superior resistance against mold and decay fungi attack under laboratory conditions. The modified wood had a similar modulus of elasticity to the unmodified wood, while experiencing a reduction in the modulus of rupture.
Collapse
Affiliation(s)
- Chia-Feng Lin
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden.
| | - Olov Karlsson
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden
| | - Olena Myronycheva
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden
| | - Oisik Das
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Rhoda Afriyie Mensah
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - George I Mantanis
- Laboratory of Wood Science and Technology, Department of Forestry, Wood Sciences and Design, University of Thessaly, GR-431 00 Karditsa, Greece
| | - Dennis Jones
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Michael Försth
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Dick Sandberg
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 87 Skellefteå, Sweden
| |
Collapse
|
4
|
Carrier J, Lai CY, Radu D. Lignin-Based Platform as a Potential Low-Cost Sorbent for the Direct Air Capture of CO 2. ACS ENVIRONMENTAL AU 2024; 4:196-203. [PMID: 39035867 PMCID: PMC11258751 DOI: 10.1021/acsenvironau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 07/23/2024]
Abstract
The urgent need to address the current climate crisis has led to concerted efforts to develop low-cost and sustainable methods to remove carbon dioxide from the atmosphere. Carbon capture and storage (CCS) and negative emissions technologies (NET's) offer the most promising paths forward to offsetting global emissions. In this study, we explore the potential of kraft lignin, a readily available biomaterial, as a low-cost alternative for the development of a CO2 sorbent. The approach leverages the known ability of amines to reacting with carbon dioxide and forming a stable compound. Commercially available kraft lignin was modified with diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) using a one-pot synthesis approach via the Mannich reaction. The sorbent was evaluated for porosity, accessible amine density, and nitrogen content. The CO2 capture experiments revealed that the resulting sorbent can capture 0.80 (±0.03) mmol of CO2 per gram of sorbent.
Collapse
Affiliation(s)
- Jake Carrier
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Cheng-Yu Lai
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Department
of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Daniela Radu
- Department
of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
5
|
Malucelli G. Bio-Sourced Flame Retardants for Textiles: Where We Are and Where We Are Going. Molecules 2024; 29:3067. [PMID: 38999018 PMCID: PMC11243121 DOI: 10.3390/molecules29133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation of bio-sourced products. Indeed, since the demonstration of the potential of such bio(macro)molecules as whey proteins, milk proteins (i.e., caseins), and nucleic acids as effective flame retardants, both natural and synthetic fibers and fabrics can take advantage of the availability of several low-environmental impact/"green" compounds, often recovered from wastes or by-products, which contain all the elements that typically compose standard flame-retardant recipes. The so-treated textiles often exhibit flame-retardant features that are similar to those provided by conventional fireproof treatments. Further, the possibility of using the same deposition techniques already available in the textile industry makes these products very appealing, considering that the application methods usually do not require hazardous or toxic chemicals. This review aims to present an overview of the development of bio-sourced flame retardants, focusing attention on the latest research outcomes, and finally discussing some current challenging issues related to their efficient application, paving the way toward further future implementations.
Collapse
Affiliation(s)
- Giulio Malucelli
- Politecnico di Torino, Department of Applied Science and Technology, Viale Teresa Michel 5, 15121 Alessandria, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| |
Collapse
|
6
|
Ranjan R, Rai R, Naik K, Parmar AS, Dhar P. Scalable phosphorylated cellulose production with improved environmental sustainability, crosslinkability and processability using 3D bioprinting for dye remediation. Int J Biol Macromol 2024; 264:130577. [PMID: 38453115 DOI: 10.1016/j.ijbiomac.2024.130577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
In the present work, phosphorylated cellulose (PC) gel has been produced following an environmentally benign approach using agro-based chemicals with improved yield. The PC gels produced were transparent, negatively charged with high consistency, charge content (1133.33 mmol/kg), degree of substitution (DS) of 0.183 and increased yield (>87 %). The XPS and EDS analysis confirms the covalently bonded phosphate groups at weight percent of 9.42 % and 11.01 %, respectively. The life cycle assessment (LCA) shows that PC gel production via the phosphorylation route is an ecologically favourable strategy compared with traditional TEMPO oxidation, resulting in 1.67 times lower CO2 emission. The rheological studies of PC gels show shear-thinning behaviour with improved 3D printability followed by heat-induced crosslinking of phosphate groups. The mechanistic insights for the condensation of phosphate to form a phosphoric ester group during cross-linking were evaluated through 31P solid-state NMR and XPS studies. Interestingly, the 3D-printed structures showed high structural stability under both compression and tensile load in both dry and wet conditions, with high water absorption (5408.33 %) and swelling capacity of 700 %. The structures show improved methylene blue (MB) remediation capabilities with a maximum removal efficiency of 99 % for 10-200 mg/L and more than seven times reusability. This work provides a green, facile and energy-efficient strategy for fabricating PCs with easy processability through additive manufacturing techniques for producing value-added products, opening up new avenues for high-performance applications.
Collapse
Affiliation(s)
- Rahul Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Kaustubh Naik
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
7
|
Barbernitz MX, Devine LR, Cole RN, Raben DM. The role of N-terminal phosphorylation of DGK-θ. J Lipid Res 2024; 65:100506. [PMID: 38272356 PMCID: PMC10914586 DOI: 10.1016/j.jlr.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.
Collapse
Affiliation(s)
- Millie X Barbernitz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren R Devine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physiology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Bang J, Kim JH, Park SW, Kim J, Jung M, Jung S, Kim JC, Choi IG, Kwak HW. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. Int J Biol Macromol 2023; 240:124330. [PMID: 37023881 DOI: 10.1016/j.ijbiomac.2023.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process. Finally, PCL/PCL-g-lignin composite nanofibers were simply prepared by adding PCL-g-lignin to the PCL doping solution and performing a solution blow spinning process. The addition of PCL-g-lignin could dramatically improve the physical and chemical properties of PCL nanofibers, and in particular, the tensile strength (0.28 MPa) increased by approximately 280 % compared to the conventional PCL. In addition, the lignin moiety present in PCL-g-lignin was able to impart UV blocking properties to PCL nanofibers, and as a result, it was possible to effectively suppress the photolysis phenomenon that occurred rapidly in existing PCL nanofibers. Therefore, PCL-g-lignin may be widely used not only as a reinforcing agent of existing biodegradable nanofibers but also as a functional additive for UV protection.
Collapse
Affiliation(s)
- Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong-Hwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sang-Woo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong Chan Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
9
|
de Sousa Nascimento L, Melo Nascimento RJ, da Mata AKA, Felipe VTA, Araújo RF, Bezerra LCA, Almeida JS, Mattos ALA, Uchoa DEA, de Novais LMR, D'Oca CDRM, Avelino F. Development of a phosphorous-based biorefinery process for producing lignocellulosic functional materials from coconut wastes. Int J Biol Macromol 2023; 239:124300. [PMID: 37011748 DOI: 10.1016/j.ijbiomac.2023.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work aimed to develop a phosphorous-based biorefinery process for obtaining phosphorylated lignocellulosic fractions in a one-pot protocol from coconut fiber. Natural coconut fiber (NCF) was mixed with 85 % m/m H3PO4 at 70 °C for 1 h to yield the modified coconut fiber (MCF), aqueous phase (AP), and coconut fiber lignin (CFL). MCF was characterized by its TAPPI, FTIR, SEM, EDX, TGA, WCA, and P content. AP was characterized regarding its pH, conductivity, glucose, furfural, HMF, total sugars and ASL contents. CFL structure was evaluated by FTIR, 1H, 31P and 1H-13C HSQC NMR, TGA and P content and was compared to that of milled wood lignin (MWL). It was observed that MCF and CFL were phosphorylated during the pulping (0.54 and 0.23 % wt., respectively), while AP has shown high sugar levels, low inhibitor content, and some remaining phosphorous. The phosphorylation of MCF and CFL also showed an enhancement of their thermal and thermo-oxidative properties. The results show that a platform of functional materials such as biosorbents, biofuels, flame retardants, and biocomposites can be created through an eco-friendly, simple, fast, and novel biorefinery process.
Collapse
|
10
|
Lin CF, Karlsson O, Das O, Mensah RA, Mantanis GI, Jones D, Antzutkin ON, Försth M, Sandberg D. High Leach-Resistant Fire-Retardant Modified Pine Wood ( Pinus sylvestris L.) by In Situ Phosphorylation and Carbamylation. ACS OMEGA 2023; 8:11381-11396. [PMID: 37008136 PMCID: PMC10061617 DOI: 10.1021/acsomega.3c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP-MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C-O-P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.
Collapse
Affiliation(s)
- Chia-feng Lin
- Wood
Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 77 Skellefteå, Sweden
| | - Olov Karlsson
- Wood
Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 77 Skellefteå, Sweden
| | - Oisik Das
- Structural
and Fire Engineering, Department of Civil, Environmental and Natural
Resources Engineering, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | - Rhoda Afriyie Mensah
- Structural
and Fire Engineering, Department of Civil, Environmental and Natural
Resources Engineering, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | - George I. Mantanis
- Laboratory
of Wood Science and Technology, Department of Forestry, Wood Sciences
and Design, University of Thessaly, GR-431 00 Karditsa, Greece
| | - Dennis Jones
- Wood
Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 77 Skellefteå, Sweden
- Department
of Wood Processing and Biomaterials, Faculty of Forestry and Wood
Sciences, Czech University of Life Sciences
Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic
| | - Oleg N. Antzutkin
- Chemistry
of Interfaces, Department of Civil, Environmental and Natural Resources
Engineering, Luleå University of
Technology, SE-971 87 Luleå, Sweden
| | - Michael Försth
- Structural
and Fire Engineering, Department of Civil, Environmental and Natural
Resources Engineering, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | - Dick Sandberg
- Wood
Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Forskargatan 1, SE-931 77 Skellefteå, Sweden
- Department
of Wood Processing and Biomaterials, Faculty of Forestry and Wood
Sciences, Czech University of Life Sciences
Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic
| |
Collapse
|
11
|
Mo B, Li Z, Peng J, Chen C. Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction. Int J Biol Macromol 2023; 239:124263. [PMID: 37004929 DOI: 10.1016/j.ijbiomac.2023.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In this work, we prepared polyhydroxylated lignin by demethylation and hydroxylation of lignin, and grafted phosphorus-containing groups by nucleophilic substitution reaction, the resulting material could be used as a carrier for the preparation of heterogeneous Cu-based catalysts (PHL-CuI-OPR2). The optimal PHL-CuI-OPtBu2 catalyst was characterized by FT-IR, TGA, BET, XRD, SEM-EDS, ICP-OES, XPS. The catalytic performance of PHL-CuI-OPtBu2 in the Ullmann CN coupling reaction was evaluated using iodobenzene and nitroindole as model substrates under nitrogen atmosphere with DME and H2O as cosolvent at 95 °C for 24 h. The applicability of modified lignin-supported copper catalyst was investigated of various aryl/heteroaryl halides with indoles under optimal conditions, the corresponding products were obtained with high yield. Additionally, it could be easily recovered from the reaction medium by an easy centrifugation and washing.
Collapse
|
12
|
Magalhães S, Moreira A, Almeida R, Cruz PF, Alves L, Costa C, Mendes C, Medronho B, Romano A, Carvalho MDG, Gamelas JAF, Rasteiro MDG. Acacia Wood Fractionation Using Deep Eutectic Solvents: Extraction, Recovery, and Characterization of the Different Fractions. ACS OMEGA 2022; 7:26005-26014. [PMID: 35936445 PMCID: PMC9352220 DOI: 10.1021/acsomega.1c07380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The selective extraction and recovery of different lignocellulosic molecules of interest from forestry residues is increasing every day not only to satisfy the needs of driving a society toward more sustainable approaches and materials (rethinking waste as a valuable resource) but also because lignocellulosic molecules have several applications. For this purpose, the development of new sustainable and ecologically benign extraction approaches has grown significantly. Deep eutectic solvents (DESs) appear as a promising alternative for the processing and manipulation of biomass. In the present study, a DES formed using choline chloride and levulinic acid (ChCl:LA) was studied to fractionate lignocellulosic residues of acacia wood (Acacia dealbata Link), an invasive species in Portugal. Different parameters, such as temperature and extraction time, were optimized to enhance the yield and purity of recovered cellulose and lignin fractions. DESs containing LA were found to be promising solvent systems, as the hydrogen bond donor was considered relevant in relation to lignin extraction and cellulose concentration. On the other hand, the increase in temperature and extraction time increases the amount of extracted material from biomass but affects the purity of lignin. The most promising DES system, ChCl:LA in a ratio of 1:3, was found to not significantly depolymerize the extracted lignin, which presented a similar molecular weight to a kraft lignin. Additionally, the 31P NMR results revealed that the extracted lignin has a high content of phenolic OH groups, which favor its reactivity. A mixture of ChCl:LA may be considered a fully renewable solvent, and the formed DES presents good potential to fractionate wood residues.
Collapse
Affiliation(s)
- Solange Magalhães
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Adriana Moreira
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Ricardo Almeida
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Pedro Fernandes Cruz
- CQC,
Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Luís Alves
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Carolina Costa
- FSCN,
Surface and Colloid Engineering, Mid Sweden
University, SE-851 70 Sundsvall, Sweden
| | - Cátia Mendes
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Bruno Medronho
- FSCN,
Surface and Colloid Engineering, Mid Sweden
University, SE-851 70 Sundsvall, Sweden
- MED
− Mediterranean Institute for Agriculture, Environment and
Development, Universidade do Algarve, Faculdade
de Ciênicas e Tecnologias, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Anabela Romano
- MED
− Mediterranean Institute for Agriculture, Environment and
Development, Universidade do Algarve, Faculdade
de Ciênicas e Tecnologias, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Maria da Graça Carvalho
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - José A. F. Gamelas
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Maria da Graça Rasteiro
- CIEPQPF,
Department of Chemical Engineering, University
of Coimbra, Pólo II − R. Silvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Flow-through strategy to fractionate lignin from eucalyptus with formic acid/hydrochloric solution under mild conditions. Int J Biol Macromol 2022; 204:364-372. [PMID: 35149095 DOI: 10.1016/j.ijbiomac.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 12/11/2022]
Abstract
Formic acid is an attractive solvent for the fractionation of lignocellulose for the production of biomaterials and chemicals, while the operation conducted in a batch manner is not conducive to mass transfer in separation process. In this research, eucalyptus was fractionated with formic acid/hydrochloric solution in a flow-through reactor at 95 °C, and the structural characteristics and the composition of fractionated lignin in different stages were investigated. Results showed that the fractionation efficiency was notably improved with a flow-through reactor, as evidenced by the low solid residue yield of 49.5% and the lignin removal rate of 79.4% as compared to the batch manner. During the fractionation process, the dissolution rate of lignin decreased gradually, and the obtained lignin samples showed low molecular weight (<3000), good uniformity (<2), and high thermal stability. The structure analysis showed that β-O-4, β-β, and β-5 linkages in lignin were degraded to varying degrees with increased time, and the degradation of G units was more severe than S ones.
Collapse
|
14
|
Madyaratri EW, Ridho MR, Aristri MA, Lubis MAR, Iswanto AH, Nawawi DS, Antov P, Kristak L, Majlingová A, Fatriasari W. Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers (Basel) 2022; 14:polym14030362. [PMID: 35160351 PMCID: PMC8840495 DOI: 10.3390/polym14030362] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Biocomposites reinforced with natural fibers represent an eco-friendly and inexpensive alternative to conventional petroleum-based materials and have been increasingly utilized in a wide variety of industrial applications due to their numerous advantages, such as their good mechanical properties, low production costs, renewability, and biodegradability. However, these engineered composite materials have inherent downsides, such as their increased flammability when subjected to heat flux or flame initiators, which can limit their range of applications. As a result, certain attempts are still being made to reduce the flammability of biocomposites. The combustion of biobased composites can potentially create life-threatening conditions in buildings, resulting in substantial human and material losses. Additives known as flame-retardants (FRs) have been commonly used to improve the fire protection of wood and biocomposite materials, textiles, and other fields for the purpose of widening their application areas. At present, this practice is very common in the construction sector due to stringent fire safety regulations on residential and public buildings. The aim of this study was to present and discuss recent advances in the development of fire-resistant biocomposites. The flammability of wood and natural fibers as material resources to produce biocomposites was researched to build a holistic picture. Furthermore, the potential of lignin as an eco-friendly and low-cost FR additive to produce high-performance biocomposites with improved technological and fire properties was also discussed in detail. The development of sustainable FR systems, based on renewable raw materials, represents a viable and promising approach to manufacturing biocomposites with improved fire resistance, lower environmental footprint, and enhanced health and safety performance.
Collapse
Affiliation(s)
- Elvara Windra Madyaratri
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (E.W.M.); (M.R.R.); (M.A.A.)
| | - Muhammad Rasyidur Ridho
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (E.W.M.); (M.R.R.); (M.A.A.)
- Research Center for Biomaterials BRIN, Jl Raya Bogor KM 46, Cibinong 16911, Indonesia;
| | - Manggar Arum Aristri
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (E.W.M.); (M.R.R.); (M.A.A.)
- Research Center for Biomaterials BRIN, Jl Raya Bogor KM 46, Cibinong 16911, Indonesia;
| | | | - Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia
- JATI-Sumatran Forestry Analysis Study Center, Jl. Tridharma Ujung No. 1, Kampus USU, Medan 20155, Indonesia
- Correspondence: (A.H.I.); (D.S.N.); or (W.F.)
| | - Deded Sarip Nawawi
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (E.W.M.); (M.R.R.); (M.A.A.)
- Correspondence: (A.H.I.); (D.S.N.); or (W.F.)
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria;
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (A.M.)
| | - Andrea Majlingová
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (A.M.)
| | - Widya Fatriasari
- Research Center for Biomaterials BRIN, Jl Raya Bogor KM 46, Cibinong 16911, Indonesia;
- Correspondence: (A.H.I.); (D.S.N.); or (W.F.)
| |
Collapse
|
15
|
Enhanced Thermal Stability and Flame Retardancy of Poly(Vinyl Chloride) Based Composites by Magnesium Borate Hydrate-Mechanically Activated Lignin. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process. ENERGIES 2020. [DOI: 10.3390/en13215803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the study involved continuous anaerobic digestion under mesophilic conditions. Three samples were degraded in the following order: (i) sewage sludge (SS), (ii) SS with the addition of kraft lignin, and (iii) SS with the addition of the kraft lignin/silica system. A quantitative analysis of the digestate samples was carried out by means of in situ fluorescence. It showed more intense proliferation of microorganisms in the SS + kraft lignin/silica variant than in the sample with pure kraft lignin. The highest amount of biogas was obtained in the SS + kraft lignin/silica variant (689 m3 Mg−1 VS, including 413 m3 Mg−1 VS of methane; VS—volatile solids). There were comparable amounts of biogas in the SS variant (526 m3 Mg−1 VS of biogas, including 51% of methane) and the SS + kraft lignin variant (586 m3 Mg−1 VS of biogas, including 54% of methane). The research clearly showed that the material with a high share of silica was an effective cell carrier.
Collapse
|