1
|
Rahmani K, Zahedi P, Shahrousvand M. Potential use of a bone tissue engineering scaffold based on electrospun poly (ɛ-caprolactone) - Poly (vinyl alcohol) hybrid nanofibers containing modified cockle shell nanopowder. Heliyon 2024; 10:e31360. [PMID: 38813180 PMCID: PMC11133941 DOI: 10.1016/j.heliyon.2024.e31360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Today, the construction of scaffolds promoting the differentiation of stem cells is an intelligent innovation that accelerates the differentiation toward the target tissue. The use of calcium and phosphate compounds is capable of elevating the precision and efficiency of the osteogenic differentiation of stem cells. In this research, osteoconductive electrospun poly (ɛ-caprolactone) (PCL) - poly (vinyl alcohol) (PVA) hybrid nanofibrous scaffolds containing modified cockle shell (CS) nanopowder were prepared and investigated. In this regard, the modified CS nanopowder was prepared by grinding and modifying with phosphoric acid, and it was then added to PVA nanofibers at different weight percentages. Based on the SEM images, the optimum content of the modified CS nanopowder was set at 7 wt %, since reaching the threshold of agglomeration restricted this incorporation. In the second step, the PVA-CS7 nanofibrous sample was hybridized with different PCL ratios. Concerning the hydrophilicity and mechanical strength, the sample named PCL50-PVA50-CS7 was ultimately selected as the optimized and suitable candidate scaffold for bone tissue application. The accelerated hydrolytic degradation of the sample was also studied by FTIR and SEM analyses, and the results confirmed that the mineral deposits of CS are available approximately 7 days for mesenchymal stem cells. Moreover, Alizarin red staining illustrated that the presence of CS in the PCL50-PVA50-CS7 hybrid nanofibrous scaffold may potentially lead to an increase in calcium deposits with high precipitates, authenticating the differentiation of stem cells towards osteogenic cells.
Collapse
Affiliation(s)
- Kimiya Rahmani
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| |
Collapse
|
2
|
Hu X, He Y, Tong Y, Sun N, Ma G, Liu H, Kou N. Fabrication and characterization of a multi-functional GBR membrane of gelatin-chitosan for osteogenesis and angiogenesis. Int J Biol Macromol 2024; 266:130978. [PMID: 38508565 DOI: 10.1016/j.ijbiomac.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaofei Hu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yunmeng Tong
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Na Sun
- School of Materials Science and Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| |
Collapse
|
3
|
Toledano-Osorio M, de Luna-Bertos E, Toledano M, Manzano-Moreno FJ, Costela-Ruiz V, Ruiz C, Gil J, Osorio R. Dexamethasone and doxycycline functionalized nanoparticles enhance osteogenic properties of titanium surfaces. Dent Mater 2023:S0109-5641(23)00114-8. [PMID: 37173196 DOI: 10.1016/j.dental.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. METHODS Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast-like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were conducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). RESULTS No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-expression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold increase with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. SIGNIFICANCE DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative procedures around titanium dental implants.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain.
| | - Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Stomatology, School of Dentistry, University of Granada, Spain
| | - Victor Costela-Ruiz
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences, Campus de Ceuta. University of Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM). Parque de Tecnológico de la Salud (PTS), Granada, Spain
| | - Javier Gil
- International University of Cataluña (UIC), Barcelona, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| |
Collapse
|
4
|
Ghaffari-Bohlouli P, Simińska-Stanny J, Jafari H, Mirzaei M, Nie L, Delporte C, Shavandi A. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232:123348. [PMID: 36682658 DOI: 10.1016/j.ijbiomac.2023.123348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Medical School, Université Libre de Bruxelles, Route de Lennik, 808, CP611, Brussels 1070, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
6
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
7
|
Bayat G, Fallah-Darrehchi M, Zahedi P, Moghaddam AB, Ghaffari-Bohlouli P, Jafari H. Kiwi extract-incorporated poly(ɛ-caprolactone)/cellulose acetate blend nanofibers for healing acceleration of burn wounds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:72-88. [PMID: 35924835 DOI: 10.1080/09205063.2022.2110483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kiwi extract (KE) including different components such as quercetin, vitamins C and E, and actinides has been known as a debridement agent for burn wounds. In this study, electrospun poly(ɛ-caprolactone)/cellulose acetate blend nanofibers incorporating KE (PCL/CA/KE) were prepared and their performance was evaluated for healing acceleration of burn wounds. The physicochemical characterization of PCL/CA/KE nanofibers showed an average diameter of ∼420 nm, porosity of 70%, water contact angle of 61°, and water uptake of ∼220%. Moreover, the continuous release trend of KE from PCL/CA blend nanofibers happened during 24 h and the release mechanism was governed by the Fickian diffusion. Besides the cytocompatibility of PCL/CA/KE nanofibers, their in vivo experiments revealed that the bioactive wound dressing based on the sample has higher wound closure compared to KE after 21 days. Histopathology of wounds dressed by PCL/CA/KE nanofibers indicated epidermal formation along with a fully extended layer. Eventually, the obtained results confirmed that the PCL/CA/KE nanofibrous sample was a promising wound dressing for burn wound healing.
Collapse
Affiliation(s)
- Ghazal Bayat
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hafez Jafari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
9
|
Wegrzynowska-Drzymalska K, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Chitosan-Gelatin Films Cross-Linked with Dialdehyde Cellulose Nanocrystals as Potential Materials for Wound Dressings. Int J Mol Sci 2022; 23:9700. [PMID: 36077096 PMCID: PMC9456065 DOI: 10.3390/ijms23179700] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, thin chitosan-gelatin biofilms cross-linked with dialdehyde cellulose nanocrystals for dressing materials were received. Two types of dialdehyde cellulose nanocrystals from fiber (DNCL) and microcrystalline cellulose (DAMC) were obtained by periodate oxidation. An ATR-FTIR analysis confirmed the selective oxidation of cellulose nanocrystals with the creation of a carbonyl group at 1724 cm-1. A higher degree of cross-linking was obtained in chitosan-gelatin biofilms with DNCL than with DAMC. An increasing amount of added cross-linkers resulted in a decrease in the apparent density value. The chitosan-gelatin biofilms cross-linked with DNCL exhibited a higher value of roughness parameters and antioxidant activity compared with materials cross-linked with DAMC. The cross-linking process improved the oxygen permeability and anti-inflammatory properties of both measurement series. Two samples cross-linked with DNCL achieved an ideal water vapor transition rate for wound dressings, CS-Gel with 10% and 15% addition of DNCL-8.60 and 9.60 mg/cm2/h, respectively. The swelling ability and interaction with human serum albumin (HSA) were improved for biofilms cross-linked with DAMC and DNCL. Significantly, the films cross-linked with DAMC were characterized by lower toxicity. These results confirmed that chitosan-gelatin biofilms cross-linked with DNCL and DAMC had improved properties for possible use in wound dressings.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
10
|
Moradi N, Kaviani S, Soufizomorrod M, Hosseinzadeh S, Soleimani M. Preparation of poly(acrylic acid)/tricalcium phosphate nanoparticles scaffold: Characterization and releasing UC-MSCs derived exosomes for bone differentiation. BIOIMPACTS : BI 2022; 13:425-438. [PMID: 37736343 PMCID: PMC10509736 DOI: 10.34172/bi.2022.24142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 09/23/2023]
Abstract
Introduction This study focused on preparing a multiscale three-dimensional (3D) scaffold using tricalcium phosphate nanoparticles (triCaPNPs) in a substrate of poly(acrylic acid) (PAA) polymer for controlled release of exosomes in bone tissue engineering. Methods A scaffold was fabricated with a material mixture containing acrylic acid (AA) monomer, N,N'-methylenebisacrylamide (MBAA), ammonium persulfate (APS), sodium bicarbonate (SBC), and triCaPNPs called composite scaffold (PAA/triCaPNPs) via cross-linking and freeze-drying methods. The synthesis process was easy and without complex multi-steps. Through mimicking the hybrid (organic-inorganic) structure of the bone matrix, we here chose triCaPNPs for incorporation into the PAA polymer. After assessing the physicochemical properties of the scaffold, the interaction of the scaffold with human umbilical cord mesenchymal stem cells (UC-MSCs) such as attachment, proliferation, and differentiation to osteoblast cells was evaluated. In addition, we used DiI-labeled exosomes to verify the exosome entrapment and release from the scaffold. Results The polymerization reaction of 3D scaffold was successful. Based on results of physicochemical properties, the presence of nanoparticles in the composite scaffold enhanced the mechanical stiffness, boosted the porosity with a larger pore size range, and offered better hydrophilicity, all of which would contribute to greater cell penetration, proliferation, and then better bone differentiation. In addition, our results indicated that our scaffold could take up and release exosomes, where the exosomes released from it could significantly enhance the osteogenic commitment of UC-MSCs. Conclusion The current research is the first study fabricating a multiscale scaffold using triCaPNPs in the substrate of PPA polymer using a cross-linker and freeze-drying process. This scaffold could mimic the nanoscale structure and chemical combination of native bone minerals. In addition, our results suggest that the PAA/triCaPNPs scaffold could be beneficial to achieve controlled exosome release for exosome-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Nahid Moradi
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufizomorrod
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Preparation and optimization of polyurethane/crosslinked poly acrylic acid semi-IPNs containing multi wall carbon nanotube applicable for artificial tendon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Shahrousvand M, Hajikhani M, Nazari L, Aghelinejad A, Shahrousvand M, Irani M, Rostami A. Preparation of colloidal nanoparticles PVA-PHEMA from hydrolysis of copolymers of PVAc-PHEMA as anticancer drug carriers. NANOTECHNOLOGY 2022; 33:275603. [PMID: 35320784 DOI: 10.1088/1361-6528/ac6089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The novel pH-responsive polymer nanoparticles have been widely used for drug delivery and cancer therapy. The pH-sensitive nanoparticles include chemical structures that can accept or donate protons in response to an environmental pH change. Polybases which mostly contain alkaline groups such as amines and hydroxy, accept protons at low pH and are neutral at higher pH values. This study aimed to prepare pH-sensitive colloidal amphiphilic poly(vinyl alcohol-2-hydroxyethyl methacrylate) (PVA-PHEMA) copolymers in cancer therapy applications. For this purpose, poly(vinyl acetate-2-hydroxyethyl methacrylate) (PVAc-PHEMA) copolymer nanoparticles were synthesized in different polymerization medium fractions from water and methanol and different monomer feed concentration. Then acetate groups were hydrolyzed, and the PHEMA-PVA nanoparticles were synthesized. The nanoparticles were further characterized using dynamic light scattering, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to identify the structural and morphological changes. The Methotrexate (MTX) was loaded into the nanoparticles, and drug release kinetics were evaluated. The results confirmed that PHEMA-PVA copolymeric nanoparticles could be favorably used in cancer therapy.
Collapse
Affiliation(s)
- Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
- Burn and Regenerative Medicine Research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohsen Hajikhani
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
| | - Leila Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amitis Aghelinejad
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Shahrousvand
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169-13817, Iran
| |
Collapse
|
13
|
Arkaban H, Barani M, Akbarizadeh MR, Pal Singh Chauhan N, Jadoun S, Dehghani Soltani M, Zarrintaj P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel) 2022; 14:1259. [PMID: 35335590 PMCID: PMC8948866 DOI: 10.3390/polym14061259] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’s University, Udaipur 313002, Rajasthan, India;
| | - Sapana Jadoun
- Department of Analytical and Inorganic Chemistry, Faculty of Sciences, University of Concepcion, Edmundo Larenas 129, Concepcion 4070371, Chile;
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
14
|
Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| |
Collapse
|
15
|
Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Optimization and characterization of poly(ℇ-caprolactone) nanofiber mats doped with bioactive glass and copper metal nanoparticles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01777-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhao S, Cui W, Rajendran NK, Su F, Rajan M. Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Behravesh A, Shahrousvand M, Goudarzi A. Poly(acrylic acid)/gum arabic/ZnO semi-IPN hydrogels: synthesis, characterization and their optimizations by response surface methodology. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00920-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Xing W, Ma Z, Wang C, Lu J, Gao J, Yu C, Lin X, Li C, Wu Y. Novel Molecular Organic Framework Composite Molecularly Imprinted Nanofibrous Membranes with a Bioinspired Viscid Bead Structure for Selective Recognition and Separation of Atrazine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28749-28763. [PMID: 34106691 DOI: 10.1021/acsami.1c02829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, novel atrazine (ATZ) molecularly imprinted nanofibrous membranes (A-MNMs) with a molecular organic framework (MOF)-based viscid bead structure were developed based on a natural spider-web-inspired strategy for selective separation of ATZ. Poly(vinylidene fluoride)/poly(vinyl alcohol) (PVDF/PVA) blended nanofibrous membranes as the basal membrane were synthesized by electrospinning technology combined with a chemical cross-linking procedure. The most critical design is that MOF nanocrystals as the matrix of the viscid bead structure were assembled on the PVDF/PVA blended nanofibrous membrane surface and the specific recognition sites were efficiently constructed on the surface and pores of the MOF-based viscid bead structure by a surface imprinting strategy. Significantly, the as-synthesized MOF-based viscid bead structure has an enhanced specific surface area, which helps to form abundant specific recognition sites in A-MNMs. Therefore, the A-MNMs with a spider-web-like structure presented an enhanced rebinding capacity (37.62 mg g-1) and permselectivity (permselectivity factors β were 4.21 and 4.31) toward ATZ. Moreover, the A-MNMs display strong practicability in separation of ATZ from simulated environmental water samples. The presented work has shown tremendous potential for preparing natural spider-web-like molecularly imprinted membranes (MIMs) for selective separation of environment pollutants.
Collapse
Affiliation(s)
- Wendong Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongfei Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chong Wang
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Gao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Ceylan S. Propolis loaded and genipin-crosslinked PVA/chitosan membranes; characterization properties and cytocompatibility/genotoxicity response for wound dressing applications. Int J Biol Macromol 2021; 181:1196-1206. [PMID: 33991555 DOI: 10.1016/j.ijbiomac.2021.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Loading propolis by a simple process using genipin as a crosslinking agent and fabrication of a novel PVA/Chitosan-Propolis membrane scaffolds were reported for wound dressing applications. The research is focused on the effects of propolis on characterization properties of membrane such as chemical structure, surface morphology, degradation ratio, crystallinity, hydrophilicity, water uptake capacity, water vapour transmission rate and mechanical aspect. It was noticed that water uptake capacity and hydrophilicity properties of membrane considerably affected by the propolis. By addition of (0.50, % v/v) propolis, the contact angle of the PVA/Chitosan membrane was remarkably decreased from 86.29° ± 3 to 45 ± 2°. 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenylte-trazolium (MTT) bromide test and SEM were used to analyse the cytocompatibility of the membranes and morphology of cells on membrane. The propolis incorporated membrane showed cell proliferation rate 176 ± 13%, 775 ± 1%, and 853 ± 23%, at 24 h, 27 h and 120 h, respectively. SEM images also supported the cell behaviour on membrane. DNA fragmentation was also investigated with genotoxicity test. The studies on the interactions between membranes and MEF cells revealed that the incorporation of propolis into membrane promoted cell proliferation. These overall results presented that propolis incorporated membranes could have potentially appealing application as scaffolds for wound healing applications.
Collapse
Affiliation(s)
- Seda Ceylan
- Bioengineering Department, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey.
| |
Collapse
|
21
|
Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 2021; 182:168-178. [PMID: 33838184 DOI: 10.1016/j.ijbiomac.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Hafez Jafari
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mamak Bakhtiari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Beeta Tavana
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|