1
|
Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem 2024; 143:107065. [PMID: 38150939 DOI: 10.1016/j.bioorg.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Since Alzheimer disease is one of the most prevalent types of dementia with a high mortality and disability rate, so development of multi-target drugs becomes the major strategy for battling AD. This study shows the development of a series of quinazolinone based derivatives as novel, multifunctional anti-AD drugs that exhibit both cholinesterase inhibitoryand anti-inflammatory properties. The preliminary results of the in vitro AChE inhibition activity showed that compounds 4b, 5a, 6f, 6h and 7b were better represented for further evaluation. Furthermore, in-vivo AChE inhibition activity and behavior Morris water maze test against donepezil as reference drug were evaluated. Additionally, hippocampal inflammatory markers; TNF-α, NFĸB, IL-1β and IL-6 and antioxidant markers; SOD and MDA were assessed to evaluate the efficacy of quinazolinone derivatives against AD hallmarks. The results showed that 6f, 6h and 7b have promising anti-acetylcholinesterase, anti-inflammatory and antioxidant activities thus, have a significant effect in treatment of AD. Moreover, Histopathological examination revealed that 6f, 6h and 7b derivatives have neuroprotective effect against neuronal damage caused by induced scopolamine model in mice. Finally, the binding ability of the synthesized derivatives to the target, AChE was investigated through molecular docking which reflected significant interactions to the target based on their docking binding scores. Hence, the newly designed quinazolinone derivatives possess promising anti-acetylcholinesterase activity and challenging for the management of AD in the future.
Collapse
Affiliation(s)
- Hadeer K Moftah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Mai H A Mousa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786 Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
2
|
Zahra SB, Ullah S, Halim SA, Waqas M, Huda NU, Khan A, Binsaleh AY, El-Kott AF, Hussain J, Al-Harrasi A, Shafiq Z. Synthesis of novel coumarin-based thiosemicarbazones and their implications in diabetic management via in-vitro and in-silico approaches. Sci Rep 2023; 13:18014. [PMID: 37865657 PMCID: PMC10590377 DOI: 10.1038/s41598-023-44837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Diabetes mellitus has a high prevalence rate and it has been deemed a severe chronic metabolic disorder with long-term complications. This research aimed to identify compounds that could potentially inhibit the vital metabolic enzyme α-glucosidase and thereby exert an anti-hyperglycemic effect. The main goal was to establish an effective approach to control diabetes. To proceed with this study, a series of novel coumarin-derived thiosemicarbazones 3a-3m was synthesized and examined using a variety of spectroscopic methods. Moreover, all the compounds were subjected to α-glucosidase inhibition bioassay to evaluate their antidiabetic potential. Fortunately, all the compounds exhibited several folds potent α-glucosidase inhibitory activities with IC50 values ranging from 2.33 to 22.11 µM, in comparison to the standard drug acarbose (IC50 = 873.34 ± 1.67 µM). The kinetic studies of compound 3c displayed concentration-dependent inhibition. Furthermore, the binding modes of these molecules were elucidated through a molecular docking strategy which depicted that the thiosemicarbazide moiety of these molecules plays a significant role in the interaction with different residues of the α-glucosidase enzyme. However, their conformational difference is responsible for their varied inhibitory potential. The molecular dynamics simulations suggested that the top-ranked compounds (3c, 3g and 3i) have a substantial effect on the protein dynamics which alter the protein function and have stable attachment in the protein active pocket. The findings suggest that these molecules have the potential to be investigated further as novel antidiabetic medications.
Collapse
Affiliation(s)
- Syeda Bakhtawar Zahra
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Noor Ul Huda
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Ammena Y Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
3
|
Durmaz L, Kiziltas H, Karagecili H, Alwasel S, Gulcin İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion ( Allium cepa). Saudi Pharm J 2023; 31:101760. [PMID: 37693735 PMCID: PMC10485163 DOI: 10.1016/j.jsps.2023.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-β-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 μg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 μg/mL (r2: 0.9015), 25.95 μg/mL (r2: 0.9221), 7.059 μg/mL (r2: 0.9614) and 11.31 μg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, 24500, Cayirli, Erzincan, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey
| | - Saleh Alwasel
- King Saud University, College of Science, Department of Zoology, 11362, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
4
|
Bayrak C, Taslimi P, Kilinc N, Gulcin I, Menzek A. Synthesis and Biological Activity of Some Bromophenols and Their Derivatives Including Natural Products. Chem Biodivers 2023; 20:e202300469. [PMID: 37432096 DOI: 10.1002/cbdv.202300469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate (1), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13-14.74 nM for AChE, 5.11-23.95 nM for BChE, and 63.96-206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, 04400, Agri, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkiye
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, 76000, Igdir, Turkiye
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkiye
| |
Collapse
|
5
|
Tokalı FS, Taslimi P, Sadeghian N, Taskin‐To T, Gülçin İ. Synthesis, Characterization, Bioactivity Impacts of New Anthranilic Acid Hydrazones Containing Aryl Sulfonate Moiety as Fenamate Isosteres. ChemistrySelect 2023. [DOI: 10.1002/slct.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University 36100 Kars Türkiye
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Tugba Taskin‐To
- Department of Chemistry Faculty of Arts and Sciences Gaziantep University 27310- Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology Institute of Health Sciences Gaziantep University 27310- Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry Faculty of Science Ataturk University Erzurum Türkiye
| |
Collapse
|
6
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int J Biol Macromol 2023; 239:124232. [PMID: 37001773 DOI: 10.1016/j.ijbiomac.2023.124232] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.
Collapse
|
7
|
Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics 2023; 15:pharmaceutics15030779. [PMID: 36986640 PMCID: PMC10051454 DOI: 10.3390/pharmaceutics15030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The widespread usage of Schiff bases in chemistry, industry, medicine, and pharmacy has increased interest in these compounds. Schiff bases and derivative compounds have important bioactive properties. Heterocyclic compounds containing phenol derivative groups in their structure have the potential to capture free radicals that can cause diseases. In this study, we designed and synthesized eight Schiff bases (10–15) and hydrazineylidene derivatives (16–17), which contain phenol moieties and have the potential to be used as synthetic antioxidants, for the first time using microwave energy. Additionally, the antioxidant effects of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were studied using by the bioanalytical methods of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS•+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging activities, and Fe3+, Cu2+, and Fe3+-TPTZ complex reducing capacities. In the context of studies on antioxidants, Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were found to be as powerful DPPH (IC50: 12.15–99.01 μg/mL) and ABTS•+ (IC50: 4.30–34.65 μg/mL). Additionally, the inhibition abilities of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were determined towards some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCAs I and II), enzymes that are linked to some global disorders including Alzheimer’s disease (AD), epilepsy, and glaucoma. In the context of studies on enzyme inhibition, it was observed that the synthesized Schiff bases (10–15) and hydrazineylidene derivatives (16–17) inhibited AChE, BChE, hCAs I, and hCA II enzymes with IC50 values in ranges of 16.11–57.75 nM, 19.80–53.31 nM, 26.08 ± 8.53 nM, and 85.79 ± 24.80 nM, respectively. In addition, in light of the results obtained, we hope that this study will be useful and guiding for the evaluation of biological activities in the fields of the food, medical, and pharmaceutical industries in the future.
Collapse
|
8
|
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon ( Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel) 2023; 13:136. [PMID: 36676085 PMCID: PMC9865886 DOI: 10.3390/life13010136] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.
Collapse
Affiliation(s)
- Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelişim University, Istanbul 34315, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Turkey
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
9
|
Zareei S, Mohammadi-Khanaposhtani M, Adib M, Mahdavi M, Taslimi P. Sulfonamide-phosphonate hybrids as new carbonic anhydrase inhibitors: In vitro enzymatic inhibition, molecular modeling, and ADMET prediction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Liu W, Shao L, Li C, Zou Y, Long H, Li Y, Ge Q, Wang Z, Ouyang G. Synthesis and Antitumor Activity of 3-Hydrazone Quinazolinone Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Sinan Tokalı F. Novel Benzoic Acid Derivatives Bearing Quinazolin‐4(3
H
)‐one Ring: Synthesis, Characterization, and Inhibition Effects on α‐Glucosidase and α‐Amylase. ChemistrySelect 2022. [DOI: 10.1002/slct.202204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University 36100 Kars Turkey
| |
Collapse
|
12
|
Valiey E, Dekamin MG, Bondarian S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: a bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv 2022; 13:320-334. [PMID: 36605675 PMCID: PMC9768850 DOI: 10.1039/d2ra07319f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, novel cross-linked chitosan by the G1 dendrimer from condensation of melamine and toluene-2,4-diisocyante terminated by sulfamic acid groups (CS-TDI-Me-TDI-NHSO3H), as a bio-based and heterogeneous acidic organocatalyst, was designed and prepared. Also, the structure of the prepared organocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis/derivative thermogravimetry (TGA/DTA). Subsequently, the catalytic performance of the biobased and dendritic CS-TDI-Me-TDI-NHSO3H, as a multifunctional solid acid, was evaluated for the preparation of 2,3-dihydroquinazoline derivatives through a three-component reaction by following green chemistry principles. Some of the advantages of this new protocol include high to excellent yields and short reaction times as well as easy preparation and remarkable catalyst stability of the introduced acidic organocatalyst. The CS-TDI-Me-TDI-SO3H catalyst can be used for up to five cycles for the preparation of quinazoline derivatives with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
13
|
Access to new phosphonate- and imidazolidine-benzopyrimidinone derivatives as antityrosinase and anti-acetylcholinesterase agents: Design, synthesis and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Anil DA, Polat MF, Saglamtas R, Tarikogullari AH, Alagoz MA, Gulcin I, Algul O, Burmaoglu S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput Biol Chem 2022; 100:107748. [DOI: 10.1016/j.compbiolchem.2022.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022]
|
15
|
Improvement of photochemical and enzyme inhibition properties of new BODIPY compound by conjugation with cisplatin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Rasool A, Batool Z, Khan M, Halim SA, Shafiq Z, Temirak A, Salem MA, Ali TE, Khan A, Al-Harrasi A. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep 2022; 12:16095. [PMID: 36167735 PMCID: PMC9515202 DOI: 10.1038/s41598-022-19975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we report the synthesis, carbonic anhydrase-II (CA-II) inhibition and structure–activity relationship studies of cinnamaldehyde-clubbed thiosemicarbazones derivatives. The derivatives showed potent activities in the range of 10.3 ± 0.62–46.6 ± 0.62 µM. Among all the synthesized derivatives, compound 3n (IC50 = 10.3 ± 0.62 µM), 3g (IC50 = 12.1 ± 1.01 µM), and 3h (IC50 = 13.4 ± 0.52 µM) showed higher inhibitory activity as compared to the standard inhibitor, acetazolamide. Furthermore, molecular docking of all the active compounds was carried out to predict their behavior of molecular binding. The docking results indicate that the most active hit (3n) specifically mediate ionic interaction with the Zn ion in the active site of CA-II. Furthermore, the The199 and Thr200 support the binding of thiosemicarbazide moiety of 3n, while Gln 92 supports the interactions of all the compounds by hydrogen bonding. In addition to Gln92, few other residues including Asn62, Asn67, The199, and Thr200 play important role in the stabilization of these molecules in the active site by specifically providing H-bonds to the thiosemicarbazide moiety of compounds. The docking score of active hits are found in range of − 6.75 to − 4.42 kcal/mol, which indicates that the computational prediction correlates well with the in vitro results.
Collapse
Affiliation(s)
- Asif Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Muhayil, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
17
|
Durmaz L, Kiziltas H, Guven L, Karagecili H, Alwasel S, Gulcin İ. Antioxidant, Antidiabetic, Anticholinergic, and Antiglaucoma Effects of Magnofluorine. Molecules 2022; 27:5902. [PMID: 36144638 PMCID: PMC9502953 DOI: 10.3390/molecules27185902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Magnofluorine, a secondary metabolite commonly found in various plants, has pharmacological potential; however, its antioxidant and enzyme inhibition effects have not been investigated. We investigated the antioxidant potential of Magnofluorine using bioanalytical assays with 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD•+), and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging abilities and K3[Fe(CN)6] and Cu2+ reduction abilities. Further, we compared the effects of Magnofluorine and butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-Tocopherol, and Trolox as positive antioxidant controls. According to the analysis results, Magnofluorine removed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC50 value of 10.58 μg/mL. The IC50 values of BHA, BHT, Trolox, and α-Tocopherol were 10.10 μg/mL, 25.95 μg/mL, 7.059 μg/mL, and 11.31 μg/mL, respectively. Our results indicated that the DPPH· scavenging effect of Magnofluorine was similar to that of BHA, close to that of Trolox, and better than that of BHT and α-tocopherol. The inhibition effect of Magnofluorine was examined against enzymes, such as acetylcholinesterase (AChE), α-glycosidase, butyrylcholinesterase (BChE), and human carbonic anhydrase II (hCA II), which are linked to global disorders, such as diabetes, Alzheimer's disease (AD), and glaucoma. Magnofluorine inhibited these metabolic enzymes with Ki values of 10.251.94, 5.991.79, 25.411.10, and 30.563.36 nM, respectively. Thus, Magnofluorine, which has been proven to be an antioxidant, antidiabetic, and anticholinergic in our study, can treat glaucoma. In addition, molecular docking was performed to understand the interactions between Magnofluorine and target enzymes BChE (D: 6T9P), hCA II (A:3HS4), AChE (B:4EY7), and α-glycosidase (C:5NN8). The results suggest that Magnofluorine may be an important compound in the transition from natural sources to industrial applications, especially new drugs.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Leyla Guven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Science, Siirt University, Siirt 56100, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
18
|
Design, synthesis, and in silico studies of quinoline-based-benzo[d]imidazole bearing different acetamide derivatives as potent α-glucosidase inhibitors. Sci Rep 2022; 12:14019. [PMID: 35982225 PMCID: PMC9386204 DOI: 10.1038/s41598-022-18455-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 18 novel quinoline-based-benzo[d]imidazole derivatives were synthesized and screened for their α-glucosidase inhibitory potential. All compounds in the series except 9q showed a significant α-glucosidase inhibition with IC50 values in the range of 3.2 ± 0.3–185.0 ± 0.3 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). A kinetic study indicated that compound 9d as the most potent derivative against α-glucosidase was a competitive type inhibitor. Furthermore, the molecular docking study revealed the effective binding interactions of 9d with the active site of the α-glucosidase enzyme. The results indicate that the designed compounds have the potential to be further studied as new anti-diabetic agents.
Collapse
|
19
|
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Tokalı FS, Demir Y, Demircioğlu İH, Türkeş C, Kalay E, Şendil K, Beydemir Ş. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev Res 2022; 83:586-604. [PMID: 34585414 DOI: 10.1002/ddr.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
21
|
Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022; 12:12011-12052. [PMID: 35481063 PMCID: PMC9020348 DOI: 10.1039/d2ra00067a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and has emerged as a controversial public health issue worldwide. The increasing number of patients with T2DM on one hand, and serious long-term complications of the disease such as obesity, neuropathy, and vascular disorders on the other hand, have induced a huge economic impact on society globally. In this regard, inhibition of α-glucosidase, the enzyme responsible for the hydrolysis of carbohydrates in the body has been the main therapeutic approach to the treatment of T2DM. As α-glucosidase inhibitors (α-GIs) have occupied a special position in the current research and prescription drugs are generally α-GIs, researchers have been encouraged to design and synthesize novel and efficient inhibitors. Previously, the presence of a sugar moiety seemed to be crucial for designing α-GIs since they can attach to the carbohydrate binding site of the enzyme mimicking the structure of disaccharides or oligosaccharides. However, inhibitors lacking glycosyl structures have also shown potent inhibitory activity and development of non-sugar based inhibitors is accelerating. In this respect, in vitro anti-α-glucosidase activity of metal complexes has attracted lots of attention and this paper has reviewed the inhibitory activity of first-row transition metal complexes toward α-glucosidase and discussed their probable mechanisms of action.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
- Liosa Pharmed Parseh Company Shiraz Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
22
|
Li S, Wang R, Hu X, Li C, Wang L. Bio-affinity ultra-filtration combined with HPLC-ESI-qTOF-MS/MS for screening potential α-glucosidase inhibitors from Cerasus humilis (Bge.) Sok. leaf-tea and in silico analysis. Food Chem 2022; 373:131528. [PMID: 34774376 DOI: 10.1016/j.foodchem.2021.131528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Cerasus humilis(Bge.) Sok. leaf-tea (CLT) has a potential anti-α-glucosidase effect. However, its anti-α-glucosidase functional compositions remain unclear. Results showed that 70% methanol extract of CLT (IC50 = 36.57 μg/mL) with the highest total phenolic/flavonoid contents exhibited significantly higher α-glucosidase inhibitory activity (α-GIA) than acarbose (IC50 = 189.57 μg/mL). Additionally, phenolic constituents of the CLT extract were analyzed for the first time in this work. Ten major potential α-glucosidase inhibitors (α-GIs) with high bio-affinity degree in the CLT extract were recognized using a bio-affinity ultra-filtration and HPLC-ESI-qTOF-MS/MS method. In vitro α-GIA assay confirmed that myricetin (IC50 = 36.17 μg/mL), avicularin (IC50 = 69.84 μg/mL), quercitrin, isoquercitrin, prunin and guajavarin were responsible for the α-GIA of the CLT extract. More importantly, the interaction mechanism between α-GIs and α-glucosidase was investigated via in silico analysis. This study provides a high-throughput screening platform for identification of the potential α-GIs from natural products.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
23
|
Determination of LC-HRMS Profiling, Antioxidant Activity, Cytotoxic Effect and Enzyme Inhibitory Properties of Satureja avromanica using in vitro and in silico methods. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
26
|
Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022; 27:271-281. [PMID: 35175415 DOI: 10.1007/s00775-022-01932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.
Collapse
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Yunus Zorlu
- Faculty of Science, Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75700, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey
| |
Collapse
|
27
|
Gulcin I, Bingöl Z, Taslimi P, Gören AC, Alwasel SH, Tel AZ. Polyphenol Contents, Potential Antioxidant, Anticholinergic and Antidiabetic Properties of Mountain Mint (Cyclotrichium leucotrichum). Chem Biodivers 2022; 19:e202100775. [PMID: 35015378 DOI: 10.1002/cbdv.202100775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
In the present work, antioxidant and antidiabetic potentials of mountain mint [Cyclotrichium leu-cotrichum (Stapf ex Rech. Fil.) Leblebici] was the first time appraised. In this sense, methanol (MECL) and water (WECL) extracts were obtained from aerial parts of mountain mint (Cyclotrichium leucotrichum) and studied for their antioxidant ability by several bioanalytical assays. Also, their inhibition profiles were realized toward several metabolic enzymes connected to some diseases, including butyrylcholinesterase (BChE), α-glycosidase, acetylcholinesterase (AChE), and α-amylase enzymes. Additionally, their phenolic contents were determined by putative chromatographic method of LC-MS/MS. Consequently, nineteen phenolic molecules were identified in MECL and fifteen phenolic molecules were found in WECL. Also, antioxidant effects of both extracts were studied using by the methods of 1,1-diphenyl-2-picryl-hydrazyl (DPPH·), 2,2´-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and (ABTS•+)N,N-dimethyl-p-phenylenediamine (DMPD•+) scavenging activities, ferric (Fe3+) and cupric (Cu2+) ions and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) reducing capacities. MECL and WECL were found as powerful DPPH· (IC50: 23.74 and 28.85 μg/mL), ABTS•+ (IC50: 12.53 and 14.05 μg/mL) and DMPD•+ scavenging effects (IC50: 43.52 and 54.80 μg/mL). Also, both extracts demonstrated the effective inhibition effects on AChE (IC50: 69.31 and 115.51 μg/mL), BChE (IC50: 57.75 and 86.62 μg/mL), α-glycosidase (IC50: 36.47 and 62.94 μg/mL) and α-amylase (IC50: 1.01 and 3.43 μg/mL). This study will be useful for future studies to determine the antioxidant properties and enzyme inhibition profile of food, medical and industrially important plants.
Collapse
Affiliation(s)
- Ilhami Gulcin
- Ataturk University, Chemistry, Faculty of Science, 25240, Erzurum, TURKEY
| | - Zeynebe Bingöl
- Ataturk University: Ataturk Universitesi, Chemistry, Faculty of Sciences, Erzurum, TURKEY
| | - Parham Taslimi
- Bartın Üniversitesi Fen Fakültesi: Bartin Universitesi Fen Fakultesi, Biotechnology, Faullty of Sciences, Bartin, TURKEY
| | - Ahmet C Gören
- Gebze Teknik Universitesi, Chemistry, Faculty of Science, 41400, Kocaeli, TURKEY
| | - Saleh H Alwasel
- King Saud University, Zoology, Colleague of Science, Riyadh, SAUDI ARABIA
| | - Ahmet Zafer Tel
- Iğdır Üniversitesi: Igdir Universitesi, Agricultural Biotechnology, Faculty of Agriculture, Iğdır, TURKEY
| |
Collapse
|
28
|
Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir İ, Aygün M, Gülçin İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg Chem 2021; 120:105566. [PMID: 34974209 DOI: 10.1016/j.bioorg.2021.105566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
A series of chiral and achiral cyclic seleno- and thiourea compounds bearing benzyl groups on N-atoms were prepared from enetetramines and appropriate Group VI elements in good yields. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy, and the molecular and crystal structures of (R,R)-4b and (R,R)-5b were confirmed by the single-crystal X-ray diffraction method. These assayed for their activities against metabolic enzymes acetylcholinesterase, butyrylcholinesterase, and α-glycosidase. These selenourea and thiourea derivatives of chiral and achiral enetetramines effectively inhibit AChE and BChE with IC50 values in the range of 3.32-11.36 and 1.47-9.73 µM, respectively. Also, these compounds inhibited α-glycosidase enzyme with IC50 values varying between 1.37 and 8.53 µM. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against α-glycosidase enzyme, (S,S)-5b, was 12-times more potent than standard inhibitor acarbose; 7b and 8a as most potent compounds against cholinesterase enzymes, were around 5 and 13-times more potent than standard inhibitor tacrine against achethylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education, Adiyaman University, 02040 Adıyaman, Turkey.
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adıyaman, Turkey
| | - Engin Çetinkaya
- Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey; Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey; Drug Application and Research Center, İnönü University, 44280 Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
29
|
Ansari S, Mohammadi-Khanaposhtani M, Asgari MS, Esfahani EN, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mahdavi M, Tas R, Taslimi P. Design, synthesis, in vitro and in silico biological assays of new quinazolinone-2-thio-metronidazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
31
|
Nasli Esfahani A, Iraji A, Alamir A, Moradi S, Asgari MS, Hosseini S, Mojtabavi S, Nasli-Esfahani E, Faramarzi MA, Bandarian F, Larijani B, Hamedifar H, Hajimiri MH, Mahdavi M. Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α-glycosidase inhibitors. Mol Divers 2021; 26:1995-2009. [PMID: 34515954 PMCID: PMC8436581 DOI: 10.1007/s11030-021-10310-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC50 values in the range of 6.31 to 49.89 μM compared to standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.
Collapse
Affiliation(s)
- Anita Nasli Esfahani
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Alamir
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Moradi
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, 1439955991, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
33
|
Riaz MT, Yaqub M, Shafiq Z, Ashraf A, Khalid M, Taslimi P, Tas R, Tuzun B, Gulçin İ. Synthesis, biological activity and docking calculations of bis-naphthoquinone derivatives from Lawsone. Bioorg Chem 2021; 114:105069. [PMID: 34134033 DOI: 10.1016/j.bioorg.2021.105069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
Some metabolic enzyme inhibitors can be used as Multi-target-Directed-Ligands (MTDL) in Medicinal chemistry therefore, synthesis and determination of alternative inhibitors are essential. In this study, novel bis-napthoquinone derivatives (5a-o) were synthesized through a multi-component cascade reaction of two molecules of 2-hydroxy-1,4-naphthoquinone with an aromatic aldehyde in basic media using triethylamine as a catalyst. This novel heterocyclic derivatives (5a-o) are applied to inhibit the carbonic anhydrase (hCA I and hCA II) isoform in low levels of nano molecules with Ki values exist between 4.62 ± 1.01 to 70.45 ± 9.03 nM for hCA I and for hCA II which is physiologically dominant Kis values are in the range of 5.61 ± 1.04 to 73.26 ± 10.25 nM. Further these novel derivatives (5a-o) efficiently inhibit AChE with Ki values in the range of 0.13 ± 0.02 to 3.16 ± 0.56 nM. The compounds are also applied for BChE with Ki values varying between 0.50 ± 0.10 to 9.23 ± 1.15 nM. For α-glycosidase, the most efficient Ki values of 5e and 5f are 76.14 ± 9.60 and 95.27 ± 12.55 nM respectively. Finally, molecular docking calculations against enzymes (acetylcholinesterase, butyrylcholinesterase, and the human carbonic anhydrase I and II) are compared using biological activities of heterocyclic derivatives. After these calculations, an ADME/T analysis is performed to study the future medicinal use of heterocyclic derivatives from lawsone.
Collapse
Affiliation(s)
- Muhammad Tariq Riaz
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey; Department of Chemistry, Faculty of Science, Istinye University, Istanbul, Turkey
| | - Recep Tas
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Burak Tuzun
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
34
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
35
|
Bingol Z, Kızıltaş H, Gören AC, Kose LP, Topal M, Durmaz L, Alwasel SH, Gulcin İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed ( Convulvulus betonicifolia Miller subsp.) - profiling of phenolic compounds by LC-HRMS. Heliyon 2021; 7:e06986. [PMID: 34027185 PMCID: PMC8129935 DOI: 10.1016/j.heliyon.2021.e06986] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
In order to evaluate the antioxidant activity of evaporated ethanolic extract (EESB) and lyophilized water extract (WESB) of Shaggy bindweed (Convulvulus betonicifolia Mill. Subs), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging effect, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+) binding activities were separately performed. Also, ascorbic acid, α-tocopherol and BHT were used as the standard compounds. Additionally, some phenolic compounds that responsible for antioxidant abilities of EESB and WESB were screened by liquid chromatography-high resolution mass spectrometry (LC-HRMS). At the same concentration, EESB and WESB demonstrated effective antioxidant abilities when compared to standards. In addition, EESB demonstrated IC50 values of 1.946 μg/mL against acetylcholinesterase (AChE), 0.815 μg/mL against α-glycosidase and 0.675 μg/mL against α-amylase enzymes.
Collapse
Affiliation(s)
- Zeynebe Bingol
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Hatice Kızıltaş
- Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Ahmet C Gören
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul 34500, Turkey
| | - Meryem Topal
- Vocational School of Health Services, Gumushane University, Gumushane 29000, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan 24500, Turkey
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
36
|
LC-HRMS Profiling and Antidiabetic, Anticholinergic, and Antioxidant Activities of Aerial Parts of Kınkor ( Ferulago stellata). Molecules 2021; 26:molecules26092469. [PMID: 33922645 PMCID: PMC8122897 DOI: 10.3390/molecules26092469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.
Collapse
|