1
|
Lu Y, Wei X, Chen M, Wang J. Non-ceruloplasmin-bound copper and copper speciation in serum with extraction using functionalized dendritic silica spheres followed by ICP-MS detection. Anal Chim Acta 2023; 1251:340993. [PMID: 36925285 DOI: 10.1016/j.aca.2023.340993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The quantification of non-ceruloplasmin-bound copper (NCBC) and total copper in biological fluids is highly required for understanding the correlation of copper with various physiological processes and diseases. In the present work, we developed dendritic spherical silica particles functionalized with EDTA, shortly as DMSPs-EDTA, from the hydrolysis of tetraethyl orthosilicate with the aid of structure-directing agents and subsequent modification of EDTA. DMSPs-EDTA serves as adsorbent with abundant binding sites to facilitate efficient extraction of NCBC. The retained NCBC on DMSPs-EDTA may be readily recovered by stripping with HNO3 (2 mol L-1). By hyphenating with ICP-MS detection, it provides a limit of detection of 1.3 pmol for NCBC. The degradation of ceruloplasmin with 200 mmol L-1 H2O2 releases the bound copper as NCBC to distribute among other ligands, which may be efficiently retained by the adsorbent and facilitate the detection of total copper. The linear ranges of 0.21-10 μmol L-1 and 0.42-30 μmol L-1 were derived for the detection of NCBC and total copper. The recovery rates for spiked NCBC or total copper in serum were derived to be 97-108% and 94-102%, respectively. The analysis of serum for a healthy subject resulted in 1.8 μmol L-1 NCBC and 9.5 μmol L-1 total copper. In addition, the proportions of 8.5-12% for NCBC were derived from the serum of healthy adults, while those for the patients with lung, hepatocellular and esophageal carcinoma were found to be 10-12%, illustrating no obvious difference against the normal group.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
2
|
Varga N, Seres L, Kovács NA, Turcsányi Á, Juhász Á, Csapó E. Serum albumin/hyaluronic acid nanoconjugate: Evaluation of concentration-dependent structural changes to form an efficient drug carrier particle. Int J Biol Macromol 2022; 220:1523-1531. [PMID: 36122775 DOI: 10.1016/j.ijbiomac.2022.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Norbert Varga
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - László Seres
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Nikolett Alexandra Kovács
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Árpád Turcsányi
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary.
| |
Collapse
|
3
|
Majid N, Siddiqi MK, Alam A, Malik S, Ali W, Khan RH. Cholic acid inhibits amyloid fibrillation: Interplay of protonation and deprotonation. Int J Biol Macromol 2022; 221:900-912. [PMID: 36096254 DOI: 10.1016/j.ijbiomac.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Amyloidopathies are the consequence of misfolding with subsequent aggregation affecting people worldwide. Irrespective of speedy advancement in the field of therapeutics no agent for treating amyloidopathies has been discovered and thus targeting amyloid fibrillation process via repositioning of small molecules can be fruitful. According to previous reports potential amyloid inhibitors possess unique features like, hydrophobicity, aromaticity, charge etc. Herein, we have explored the effect of Cholic acid (CA) on amyloid fibrillation irrespective of the charge (determined by Zetasizer) using four proteins Human Serum Albumin, Bovine Serum Albumin, Human Insulin and Beta-lactoglobulin (HSA, BSA, HI and BLG) employing biophysical, imaging and computational techniques. ThT results revealed that CA in both protonated and deprotonated form is potent to curb HSA, BSA, BLG aggregation ~50% and HI aggregation ~96% in a dose dependent manner (in accord with CD, ANS and Congo red assay). Interestingly, CA treated samples displayed reduced cytotoxicity (Hemolytic assay) with altered morphology (TEM) and mechanism behind inhibition may be the interaction of CA with proteins via hydrophobic interactions and hydrogen bonding (supported by molecular docking results). This study proved CA (irrespective of the pH) a potential inhibitor of amyloidosis thus can be helpful in generalizing and repurposing the related drugs/compounds for their anti-aggregation behavior as an implication towards treating amyloidopathies.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wareesha Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Sun D, Xie J, Chen CJ, Liu JT. Analyzation of the binding mechanism and the isoelectric point of glycated albumin with self-assembled, aptamer-conjugated films by using surface plasmon resonance. Colloids Surf B Biointerfaces 2022; 214:112445. [PMID: 35290823 DOI: 10.1016/j.colsurfb.2022.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Glycated albumin(GA), a biomarker which has great potential to replace glycated hemoglobin in the diagnosis and treatment of diabetes, is being extensively studied by scientists, especially in preventive medicine. Aptamers, as novel probes, have attracted much attention due to their high specificity, wide storage conditions, and simple preparation. However, the interaction mechanism between GA and its aptamer is still unclear, hindering the progress of diabetic aptamer sensors into clinical testing. In this study, the interaction mechanism between GA and its aptamer was evaluated for the first time using surface plasmon resonance by changing the pH value, salt concentration and temperature. The successful preparation of the sensor chip is proved by the water contact angle, Atomic Force Microscope, and the X-ray photoelectron spectroscopy. This study shows that the pH can greatly affect the formation of a complex from the interaction between the aptamer and GA. The interaction mechanism between GA aptamer and GA was caused by electrostatic force. Otherwise, this is the first time to detect protein isoelectric point (pI) using SPR. This study provides an important reference for researchers of aptamer sensors from the perspective of detection environment, and promotes the use of aptamer sensors to the clinic.
Collapse
Affiliation(s)
- Dapeng Sun
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jing Xie
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Ching-Jung Chen
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; School of Opto-Electronic Technology, University of Chinese Academy of Sciences, China.
| | - Jen-Tsai Liu
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Westphalen H, Kalugin D, Abdelrasoul A. Structure, function, and adsorption of highly abundant blood proteins and its critical influence on hemodialysis patients: A critical review. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|