1
|
Yuan Q, Liang R, Lv K, Shi X, Leng J, Liu Y, Xiao J, Zhang L, Zhao L. Structural characterization of a Chlorella heteropolysaccharide by analyzing its depolymerized product and finding an inducer of human dendritic cell maturation. Carbohydr Polym 2024; 333:122000. [PMID: 38494209 DOI: 10.1016/j.carbpol.2024.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Chlorella polysaccharides have been gaining increasing attention because of their high yield from dried Chlorella powder and their remarkable immunomodulatory activity. In this study, the major polysaccharide fraction, CPP-3a, in Chlorella pyrenoidosa, was isolated, and its detailed structure was investigated by analyzing the low-molecular-weight product prepared via free radical depolymerization. The results indicated that CPP-3a with a molecular weight of 195.2 kDa was formed by →2)-α-L-Araf-(1→, →2)-α-D-Rhap-(1→, →5)-α-L-Araf-(1→, →3)-β-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →4)-α-D-GlcpA-(1→, →2,3)-α-D-Manp-(1→, →3,4)-α-D-Manp-(1→, →3,4)-β-D-Galp-(1→, →3,6)-β-D-Galp-(1→, and →2,3,6)-α-D-Galp-(1→ residues, branched at C2, C3, C4, or C6 of α/β-D-Galp and α-D-Manp, and terminated by α/β-L-Araf, α-L-Arap, α-D-Galp, and β-D-Glcp. Biological assays showed that CPP-3a significantly altered the dendritic morphology of immature dendritic cells (DCs). Enhanced CD80, CD86, and MHC I expression on the cell surface and decreased phagocytic ability indicated that CPP-3a could induce the maturation of DCs. Furthermore, CPP-3a-stimulated DCs not only stimulated the proliferation of allogeneic naïve CD4+ T cells and the secretion of IFN-γ, but also directly stimulated the activation and proliferation of CD8+ T cells through cross-antigen presentation. These findings indicate that CPP-3a can promote human DC maturation and T-cell stimulation and may be a novel DC maturation inducer with potential developmental value in DC immunotherapy.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongyi Liang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lifeng Zhang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
2
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Pyropia yezoensis-derived porphyran attenuates acute and chronic colitis by suppressing dendritic cells. Int J Biol Macromol 2023; 231:123148. [PMID: 36639074 DOI: 10.1016/j.ijbiomac.2023.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Porphyran is known to inhibit immune cell function. Previously, porphyran was shown to prevent lipopolysaccharide-induced sepsis in mice. However, studies on the inhibitory effects of porphyran during colitis are currently lacking. In this study, we evaluated the effects of Pyropia yezoensis-derived porphyran on dextran sodium sulfate (DSS)-induced acute and chronic colitis. The oral or intraperitoneal administration of porphyran inhibited the progression of DSS-induced colitis in mice, with the former also preventing immune cell infiltration in the colon. The levels of intracellular interferon-γ and interleukin-17 in T cells decreased when porphyran was administered orally. Porphyran inhibited T cell activation by suppressing dendritic cells (DCs) and macrophages. Porphyran prevented pathogen-associated molecular pattern and damage-associated molecular pattern-dependent DC and macrophage activation. Finally, porphyran attenuated chronic colitis caused via the long-term administration of DSS. These findings indicate that the oral administration of porphyran can inhibit DSS-induced colitis by suppressing DC and macrophage activation.
Collapse
|
4
|
Diego-González L, Simón-Vázquez R. Immunomodulatory properties of algae. FUNCTIONAL INGREDIENTS FROM ALGAE FOR FOODS AND NUTRACEUTICALS 2023:593-615. [DOI: 10.1016/b978-0-323-98819-3.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
An EK, Zhang W, Kwak M, Lee PCW, Jin JO. Polysaccharides from Astragalus membranaceus elicit T cell immunity by activation of human peripheral blood dendritic cells. Int J Biol Macromol 2022; 223:370-377. [PMID: 36368354 DOI: 10.1016/j.ijbiomac.2022.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Astragalus membranaceus is a widely used herbal medicine in Asia. It has been recognized as possessing various biological properties, however, studies on the activity of the A. membranaceus polysaccharide (AMP), a major component of A. membranaceus, on human peripheral blood dendritic cells (PBDCs) have not been thoroughly investigated. In this study, we found that AMP induced changes in dendritic morphology and the upregulation of activation marker expression and inflammatory cytokine production in human blood monocyte-derived dendritic cells (MDDCs). The AMP promoted the activation of both blood dendritic cell antigen 1+ (BDCA1+) and BDCA3+ PBDCs. AMP-induced secretion of cytokines in the peripheral blood mononuclear cells (PBMCs) was mainly due to PBDCs. Finally, activated BDCA1+ and BDCA3+ PBDCs by AMP elicited proliferation and activation of autologous T cells, respectively. Hence, these data demonstrated that AMPs could activate dendritic and T cells in human blood, and may provide a new direction for the application of AMPs in the regulation of human immunity.
Collapse
Affiliation(s)
- Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
6
|
Kiselevskiy MV, Anisimova NY, Ustyuzhanina NE, Vinnitskiy DZ, Tokatly AI, Reshetnikova VV, Chikileva IO, Shubina IZ, Kirgizov KI, Nifantiev NE. Perspectives for the Use of Fucoidans in Clinical Oncology. Int J Mol Sci 2022; 23:11821. [PMID: 36233121 PMCID: PMC9569813 DOI: 10.3390/ijms231911821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidans are natural sulfated polysaccharides that have a wide range of biological functions and are regarded as promising antitumor agents. The activity of various fucoidans and their derivatives has been demonstrated in vitro on tumor cells of different histogenesis and in experiments on mice with grafted tumors. However, these experimental models showed low levels of antitumor activity and clinical trials did not prove that this class of compounds could serve as antitumor drugs. Nevertheless, the anti-inflammatory, antiangiogenic, immunostimulating, and anticoagulant properties of fucoidans, as well as their ability to stimulate hematopoiesis during cytostatic-based antitumor therapy, suggest that effective fucoidan-based drugs could be designed for the supportive care and symptomatic therapy of cancer patients. The use of fucoidans in cancer patients after chemotherapy and radiation therapy might promote the rapid improvement of hematopoiesis, while their anti-inflammatory, immunomodulatory, and anticoagulant effects have the potential to improve the quality of life of patients with advanced cancer.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Nadezhda E. Ustyuzhanina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Dmitry Z. Vinnitskiy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Alexandra I. Tokatly
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Vera V. Reshetnikova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina O. Chikileva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina Zh. Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Kirill I. Kirgizov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Nikolay E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| |
Collapse
|
7
|
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022; 27:molecules27186032. [PMID: 36144768 PMCID: PMC9506145 DOI: 10.3390/molecules27186032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.
Collapse
|
8
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
9
|
An EK, Hwang J, Kim SJ, Park HB, Zhang W, Ryu JH, You S, Jin JO. Comparison of the immune activation capacities of fucoidan and laminarin extracted from Laminaria japonica. Int J Biol Macromol 2022; 208:230-242. [PMID: 35337909 DOI: 10.1016/j.ijbiomac.2022.03.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Laminaria japonica is a brown alga and is composed primarily of polysaccharides. Fucoidan and laminarin are the major polysaccharides of L. japonica and exhibit biological activities, including immune modulation and anti-coagulant and antioxidant effects in animals and humans. In this study, we evaluated the ability of fucoidan and laminarin from L. japonica to induce immune cell activation and anti-cancer immunity, which has not yet been studied. The injection of fucoidan to mice promoted the upregulation of major histocompatibility complex and surface activation molecules in splenic dendritic cell subsets, whereas laminarin showed a weaker immune activation ability. In addition, fucoidan treatment elicited inflammatory cytokine production; however, laminarin did not induce the production of these cytokines. Regarding cytotoxic cell activities, fucoidan induced the activation of lymphocytes, including natural killer and T cells, whereas laminarin did not induce cell activation. Finally, fucoidan enhanced the anticancer efficacy of anti-programmed Death-Ligand 1 (PD-L1) antibody against Lewis lung carcinoma, whereas laminarin did not promote the cancer inhibition effect of anti-PD-L1 antibody. Thus, these data suggest that fucoidan from L. japonica can be used as an immune stimulatory molecule to enhance the anticancer activities of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Juyoung Hwang
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So-Jung Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae-Bin Park
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
10
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Park AY, Nafia I, Stringer DN, Karpiniec SS, Fitton JH. Fucoidan Independently Enhances Activity in Human Immune Cells and Has a Cytostatic Effect on Prostate Cancer Cells in the Presence of Nivolumab. Mar Drugs 2021; 20:12. [PMID: 35049864 PMCID: PMC8779234 DOI: 10.3390/md20010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.
Collapse
Affiliation(s)
- Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Imane Nafia
- Explicyte Immuno-Oncology, 33000 Bordeaux, France;
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
- RDadvisor, Hobart, TAS 7006, Australia
| |
Collapse
|
12
|
Ahmad T, Eapen MS, Ishaq M, Park AY, Karpiniec SS, Stringer DN, Sohal SS, Fitton JH, Guven N, Caruso V, Eri R. Anti-Inflammatory Activity of Fucoidan Extracts In Vitro. Mar Drugs 2021; 19:702. [PMID: 34940701 PMCID: PMC8704339 DOI: 10.3390/md19120702] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fucoidans are sulfated, complex, fucose-rich polymers found in brown seaweeds. Fucoidans have been shown to have multiple bioactivities, including anti-inflammatory effects, and are known to inhibit inflammatory processes via a number of pathways such as selectin blockade and enzyme inhibition, and have demonstrated inhibition of inflammatory pathologies in vivo. In this current investigation, fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for modulation of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) by human peripheral blood mononuclear cells (PBMCs) and in a human macrophage line (THP-1). Fucoidan extracts exhibited no signs of cytotoxicity in THP-1 cells after incubation of 48 h. Additionally, all fucoidan extracts reduced cytokine production in LPS stimulated PBMCs and human THP-1 cells in a dose-dependent fashion. Notably, the 5-30 kDa subfraction from Macrocystis pyrifera was a highly effective inhibitor at lower concentrations. Fucoidan extracts from all species had significant anti-inflammatory effects, but the lowest molecular weight subfractions had maximal effects at low concentrations. These observations on various fucoidan extracts offer insight into strategies that improve their efficacy against inflammation-related pathology. Further studies should be conducted to elucidate the mechanism of action of these extracts.
Collapse
Affiliation(s)
- Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - Muhammad Ishaq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
- RDadvisor, Hobart, TAS 7006, Australia
| | - Nuri Guven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
- ISAL Foundation, Research on Pain, Torre Pedrera, 204-47922 Rimini, Italy
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| |
Collapse
|
13
|
Zhang W, An EK, Park HB, Hwang J, Dhananjay Y, Kim SJ, Eom HY, Oda T, Kwak M, Lee PCW, Jin JO. Ecklonia cava fucoidan has potential to stimulate natural killer cells in vivo. Int J Biol Macromol 2021; 185:111-121. [PMID: 34119543 DOI: 10.1016/j.ijbiomac.2021.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Fucoidan is a sulfated polysaccharide, derived from various marine brown seaweeds, that has immunomodulatory effects. In this study, we analyzed the effects of five different fucoidans, which were extracted from Ascophyllum nodosum, Undaria pinnatifida, Macrocystis pyrifera, Fucus vesiculosus, and Ecklonia cava, on natural killer (NK) cell activation in mice. Among these, E. cava fucoidan (ECF) promoted an increase in the number of NK cells in the spleen and had the strongest effect on the activation of NK cells. Additionally, we observed that DC stimulation was required for NK cell activation and that ECF had the most potent effect on splenic dendritic cells (DC). Finally, ECF treatment effectively prevented infiltration of CT-26 carcinoma cells in the lungs of BALB/c mice in an NK cell dependent manner. Collectively, these results suggest that ECF could be a suitable candidate for enhancing NK cell-mediated anti-cancer immunity.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae-Bin Park
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hee-Yun Eom
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
14
|
Zhang W, Hwang J, Yadav D, An EK, Kwak M, Lee PCW, Jin JO. Enhancement of Immune Checkpoint Inhibitor-Mediated Anti-Cancer Immunity by Intranasal Treatment of Ecklonia cava Fucoidan against Metastatic Lung Cancer. Int J Mol Sci 2021; 22:9125. [PMID: 34502035 PMCID: PMC8431244 DOI: 10.3390/ijms22179125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although fucoidan, a well-studied seaweed-extracted polysaccharide, has shown immune stimulatory effects that elicit anticancer immunity, mucosal adjuvant effects via intranasal administration have not been studied. In this study, the effect of Ecklonia cava-extracted fucoidan (ECF) on the induction of anti-cancer immunity in the lung was examined by intranasal administration. In C57BL/6 and BALB/c mice, intranasal administration of ECF promoted the activation of dendritic cells (DCs), natural killer (NK) cells, and T cells in the mediastinal lymph node (mLN). The ECF-induced NK and T cell activation was mediated by DCs. In addition, intranasal injection with ECF enhanced the anti-PD-L1 antibody-mediated anti-cancer activities against B16 melanoma and CT-26 carcinoma tumor growth in the lungs, which were required cytotoxic T lymphocytes and NK cells. Thus, these data demonstrated that ECF functioned as a mucosal adjuvant that enhanced the immunotherapeutic effect of immune checkpoint inhibitors against metastatic lung cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
| | - Peter Chang-Whan Lee
- ASAN Medical Center, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
15
|
Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar Drugs 2021; 19:265. [PMID: 34068561 PMCID: PMC8151601 DOI: 10.3390/md19050265] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Collapse
Affiliation(s)
- Jun-O. Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior 474005, India;
| | - Ananta Prasad Arukha
- Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Vishal Chavda
- Division of Anaesthesia, Sardar Women’s Hospital, Ahmedabad 380004, Gujarat, India;
| | - Anuj Dubey
- Department of Chemistry, ITM Group of Institutions, Gwalior 475005, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|