1
|
MubarakAli D, Saravanakumar K, Ganeshalingam A, Santosh SS, De Silva S, Park JU, Lee CM, Cho SH, Kim SR, Cho N, Thiripuranathar G, Park S. Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections. Pharmaceutics 2024; 16:976. [PMID: 39204321 PMCID: PMC11359499 DOI: 10.3390/pharmaceutics16080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0-5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India;
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | | | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - Jung Up Park
- Division of Practical Application, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Republic of Korea;
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Su-Hyeon Cho
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea;
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| |
Collapse
|
2
|
Sharma D, Sharma A, Bala R, Singh B. Investigations on physiochemical and biomedical properties of Aloe vera - Sterculia gum copolymeric dressings impregnated with antibiotic-anesthetic drugs to enhance wound healing. Int J Biol Macromol 2024; 267:131363. [PMID: 38583847 DOI: 10.1016/j.ijbiomac.2024.131363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Recently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain. Copolymers were characterized by FESEM, SEM, EDS, AFM, 13C NMR, FTIR, XRD, and TGA-DTG analysis. Hydrogel exhibited a fluid absorption capacity of 4.52 ± 0.12 g per gram of polymeric dressing in simulated wound conditions. The hydrogels displayed a sustained release of drugs, demonstrating a non-Fickian diffusion mechanism. Polymer dressings revealed antibacterial, mucoadhesive, antioxidant, biocompatible and non-cytotoxic properties. Additionally, HWD displayed permeability to O2 and water vapour, yet was impermeable to microbial penetration. Overall, the findings of physiological, biochemical and drug delivery properties demonstrated the suitability of materials for wound dressing applications.
Collapse
Affiliation(s)
- Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Ashima Sharma
- Department of Physiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ritu Bala
- Department of Chemistry, Government College Dharamshala, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
3
|
Luanda A, Manohar M, Charyulu RN, Badalamoole V. Evaluation of drug release efficiency and antibacterial property of a pH-responsive dextran-based silver nanocomposite hydrogel. Int J Biol Macromol 2024; 268:131783. [PMID: 38657933 DOI: 10.1016/j.ijbiomac.2024.131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The bioavailability of curcumin (CUR), a highly lipophilic and commonly used anticancer drug, is mainly affected by its poor solubility in aqueous environment and quick metabolism. These challenges can be met by employing delivery systems. Nanocomposite materials have been used as delivery systems to enhance the solubility and dissolution rate of the drug. This study aims to develop dextran-graft-poly(4-acryloylmorpholine) silver nanocomposite using a microwave-assisted method to evaluate its drug-release efficiency and antimicrobial activity. The materials were characterized by FT-IR, FE-SEM, EDS, XRD, HR-TEM, TGA, and BET techniques. Drug loading and release efficiency were evaluated using CUR as the model drug. The swelling and drug release studies were conducted in buffer solutions of pH 1.2 and 7.4. Staphylococcus aureus and Escherichia coli were employed to evaluate the antibacterial activity. The cytotoxicity was assessed by MTT assay against the breast MCF-10. Higher swelling and drug release were observed at pH 1.2 than 7.4. Nanocomposite hydrogel exhibited antibacterial activity against the tested bacterial strains. Cytotoxicity study proved the safety of the developed matrix. The results suggest the developed nanocomposite hydrogel to be a promising polymer matrix for the sustained release of CUR for cancer treatment that requires infectious control.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - M Manohar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
4
|
Eivazzadeh-Keihan R, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Bani MS, Karimi AH, Maleki A, Mahdavi M. A novel ternary magnetic nanobiocomposite based on tragacanth-silk fibroin hydrogel for hyperthermia and biological properties. Sci Rep 2024; 14:8166. [PMID: 38589455 PMCID: PMC11002001 DOI: 10.1038/s41598-024-58770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Amir Hossein Karimi
- Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Patel M, Kikani T, Saren U, Thakore S. Bactericidal, anti-biofilm, anti-oxidant potency and catalytic property of silver nanoparticles embedded into functionalised chitosan gel. Int J Biol Macromol 2024; 262:129968. [PMID: 38320641 DOI: 10.1016/j.ijbiomac.2024.129968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Chitosan is a versatile biocompatible polysaccharide which has attracted great attention for gel synthesis. Its reducing character is specifically exploited for nanoparticle synthesis via green approach. A silver nanocomposite synthesized using this gel, with a novel gelling agent 2,4,6-trihydroxy benzaldehyde, was found to be a promising candidate for several applications including anti-bacterial, anti-biofilm and anti-oxidant activity as well as catalysis. The nanocomposite was well characterized using various spectroscopic and microscopic techniques such as IR, TGA, XRD, XPS, SEM and TEM. The nanocomposite exhibited high bactericidal activity against both S. aureus and E. coli. Further, it was evaluated for anti-biofilm forming property and its potency as antioxidant agent. The nanocomposite served as a catalyst for degradation of Methyl Orange and Rhodamine B at high concentrations (in the range of mM) with a catalytic efficiency of 98.58 % and 99.56 % within 3 min and 5 min respectively.
Collapse
Affiliation(s)
- Miraj Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Twara Kikani
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ukil Saren
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.
| |
Collapse
|
6
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Nagaraja K, Tae Hwan O. Green synthesis of Multifunctional Zinc oxide Nanoparticles from Cordia myxa gum; and their Catalytic Reduction of Nitrophenol, Anticancer and Antimicrobial Activity. Int J Biol Macromol 2023; 253:126788. [PMID: 37717862 DOI: 10.1016/j.ijbiomac.2023.126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
In situ exfoliated natural polysaccharide Cordia myxa (CMX) is used to promote the utilization of zinc-oxide nanoparticles for eco-friendly catalytic hydrogenation of p-nitrophenol (p-NP) and microbial growth inhibition. Polysaccharide-mediated biosynthetic nanocomposite materials are interesting because they are cheap, green, and environmentally friendly. This study uses CMX gum as a bioreduction to produce multifunctional, environmentally friendly zinc-oxide nanocomposites (ZnO NPs). The process involves a low reaction time and temperature and utilizes CMX as a reducing and stabilizing agent. The structural, morphological, and optical properties of the CMX-ZnO nanocomposite were characterized. The biosynthetic CMX-ZnO NPs exhibited robust catalytic activity and recycling capacity for rapidly oxidizing hazardous p-NPs. The complete reduction of 4-NP to CMX-ZnO NPs in excess NaBH4 was achieved within 15 min, with recyclability and pseudo-first-order kinetics with a rate constant of 0.2571 min-1. Additionally, human colon cancer (HCT116) and 3T3L1 cell lines were remarkably sensitive to the cytotoxic effects of ZnO nanoparticles. CMX-ZnO NPs exhibited potent antibacterial properties against human pathogenic gram-positive and gram-negative bacteria (Bacillus, Salmonella, E. coli, and Pseudomonas aeruginosa) based on the zone of inhibition measured by the disc-diffusion method. The significant antibacterial activity of CMX-ZnO NPs can overcome the current limitations associated with removing water-soluble organic pollutants and microbiological contaminants for long-term environmental sustainability.
Collapse
Affiliation(s)
- Kasula Nagaraja
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Oh Tae Hwan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Venupriya V, Krishnaveni V, Ramya M. Fabrication and characterization of fish gelatin-based magnetic nanocomposite for biomedical applications. World J Microbiol Biotechnol 2023; 40:23. [PMID: 38040938 DOI: 10.1007/s11274-023-03800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
Bionanocomposite is considered an advanced way to bridge the gap between the structural and functional material and achieve the desired properties in the nanocomposite. This present study highlighted the synthesis of fish gelatin-based magnetic nanocomposite (GMNC) using three different concentrations of gelatin (6% w/v, G12% w/v, and 18% w/v) individually, through the in situ coprecipitation method. The effect of gelatin concentration on the structural, functional, magnetic properties, and biocompatibility of the GMNC was studied successfully. This variation reduces the crystallite size from 20.8 to 12.2 nm. GMNC obtained at minimum gelatin concentration (6% w/v) produced well-dispersed sphere-shaped magnetite nanoparticles with an average particle size of 33 nm without aggregation. All three reported superparamagnetic behavior at 293 K. It also noted the highly biocompatible and biodegradable nature of GMNC with a high magnetic response at a low magnetic field. This study reported the perspective of this functionalization method for biomedical applications, as GMNC is a potential carrier material that is easily attached to drug molecules through the free functional residues of gelatin molecules. The present study also performed the in vitro drug release behavior of 5'Fluorouracil-loaded GMNC (GF) at physiological conditions (pH 7.4 and 37 °C). It indicates the prepared GF exhibits a sustained drug-release profile for up to 48 h. Hence, these results strongly supported that the functionalized GMNC would be a potential carrier material for advanced drug delivery applications.
Collapse
Affiliation(s)
- V Venupriya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, Coimbatore, Tamilnadu, India.
- Department of ECE, PSG College of Technology, Peelamedu, Coimbatore, Tamilnadu, India.
| | - V Krishnaveni
- Department of ECE, PSG College of Technology, Peelamedu, Coimbatore, Tamilnadu, India
| | - M Ramya
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Azadi A, Rafieian F, Sami M, Rezaei A. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. Int J Biol Macromol 2023; 245:125225. [PMID: 37285892 DOI: 10.1016/j.ijbiomac.2023.125225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The aim of this investigation was to prepare and characterize active composite films made of chitosan (CS), tragacanth gum (TG), polyvinyl alcohol (PVA) and loaded with different concentrations of cinnamon essential oil (CEO) nanoemulsion (CEO, 2 and 4 % v/v). For this purpose, the amount of CS was fixed and the ratio of TG to PVA (90:10, 80:20, 70:30, and 60:40) was considered variable. The physical (thickness and opacity), mechanical, antibacterial and water-resistance properties of the composite films were evaluated. According to the microbial tests, the optimal sample was determined and evaluated with several analytical instruments. CEO loading increased the thickness and EAB of composite films, while decreasing light transmission, tensile strength, and water vapor permeability. All the films containing CEO nanoemulsion had antimicrobial properties, but this activity was higher against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) than Gram-negative types (Escherichia coli (O157:H7) and Salmonella typhimurium). According to the results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD), the interaction between the components of the composite film was confirmed. It can be concluded that the CEO nanoemulsion can be incorporated in CS/TG/PVA composite films and successfully used as active and environmentally friendly packaging.
Collapse
Affiliation(s)
- Aidin Azadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
11
|
Hanna DH, El-Mazaly MH, Mohamed RR. Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells. Int J Biol Macromol 2023; 231:123364. [PMID: 36693607 DOI: 10.1016/j.ijbiomac.2023.123364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The current research relies on a one-pot green biosynthesis of silver nanoparticles (SNPs) with various ratios of silver (Ag) in the existence of N, N, N-trimethyl chitosan chloride (TMC) and carboxymethyl kappa-carrageenan (CMKC), to investigate the effectiveness of the synthesized silver nanocomposites (SNCs) as pH sensitive biodegradable carrier for orally intestinal delivery of 5-fluorouracil (5-FU) drug. FTIR, XRD, TEM and FE-SEM/EDX methods were utilized to demonstrate the structure of the prepared polyelectrolyte complex PEC (TMC/CMKC) and SNCs (TMC/CMKC/Ag). The results showed that the 5-FU encapsulation effectiveness inside all of the prepared SNCs samples was improved by increasing the concentration of Ag, reaching 92.16 ± 0.57 % with 3 % Ag. In vitro release behavior of 5-FU loaded SNC 3 % (TMC/CMKC/Ag 3 %), displayed slow and sustained release reaching 96.3 ± 0.81 % up to 24 h into pH 7.4 medium. The successful release of 5-FU from the loaded SNC 3 % was confirmed through occurrence of strong cytotoxicity, with an IC50 value of 31.15 μg/ml, and high % of apoptotic cells (30.66 %) within the treated HCT116 cells. Besides, SNC 3 % showed good biodegradability and antimicrobial properties against different bacterial strains. Overall, SNC 3 % can be suggested as an effective system for both controlled drug delivery and antibacterial action.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Marwa H El-Mazaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Riham R Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Singh B, Kumari A, Sharma D, Dhiman A, Kumar S. Fabricating gum polysaccharides based nano-composites for drug delivery uses via sustainable green approach. Int J Biol Macromol 2023; 235:123856. [PMID: 36870665 DOI: 10.1016/j.ijbiomac.2023.123856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Recent advancements in development of natural polymer nono-composites led to exploration of potential of gum acacia (GA) and tragacanth gum (TG) for design of silver nanoparticles (AgNPs) impregnated grafted copolymers via green approach for use in drug delivery (DD). The formation of copolymers was confirmed by UV-Vis spectroscopy, TEM, SEM, AFM, XPS, XRD, FTIR,TGA and DSC. UV-Vis spectra indicated the formation of AgNPs using GA as reducing agent. TEM, SEM, XPS and XRD revealed impregnation of AgNPs inside the copolymeric network hydrogels. TGA inferred thermal stability of polymer enhanced by grafting and incorporation of AgNPs. The non-Fickian diffusion of antibiotic drug meropenem was revealed from drug encapsulated GA-TG-(AgNPs)-cl-poly(AAm) network which were also pH responsive and release profile was fitted in Korsmeyer-Peppas kinetic model. Sustained release was due to polymer-drug interaction. The polymer-blood interaction demonstrated biocompatible characteristics of polymer. Mucoadhesive property exhibited by copolymers because of supra-molecular interactions. Antimicrobial characteristics were shown by copolymers against bacteria S. flexneri, P. auroginosa, and B. cereus.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Abhishek Dhiman
- Mahatma Gandhi Government Engineering College Kotla, Jeori, Rampur, Himachal Pradesh 172101, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
13
|
Yu B, Shi R, Liu C, Liu Z, Shen P, Hu J, Shi F. pH-responsive gelatin polymer-coated silica-based mesoporous composites for the sustained-release of indomethacin. Heliyon 2023; 9:e13705. [PMID: 36873513 PMCID: PMC9976327 DOI: 10.1016/j.heliyon.2023.e13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
This paper prepared drug-loaded mesoporous silica composites with a pH-responsive type. These composites were prepared by using three-dimensional caged silica (SBA-16) as the carrier, 3-aminopropyl trimethoxysilane (APTMS) as the silane coupling agent, and indomethacin (IMC) as the loaded drug, respectively. The drug-loaded precursor NH2-SBA-16@IMC was prepared by solution diffusion adsorption. Finally, the pH-responsive drug-loaded composites NH2-SBA-16@IMC@GA were synthesized by wrapping the NH2-SBA-16@IMC with a condensation polymer of gelatin and glutaraldehyde. The composition and structure of the drug-loaded composites were characterized by FT-IR, XRD, TG, SEM, TEM, and N2 adsorption-desorption. The in vitro simulated release performance of the drug-loaded composites was investigated at 37 °C under three pH conditions. The results show that the NH2-SBA-16@IMC@GA can be released in response to specific pH environment, which can effectively control the release speed of the indomethacin.
Collapse
Affiliation(s)
- Bo Yu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ruiping Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Chunlai Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zelong Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Peihang Shen
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jianglei Hu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Fengwei Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
14
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
15
|
Garg D, Matai I, Agrawal S, Sachdev A. Hybrid gum tragacanth/sodium alginate hydrogel reinforced with silver nanotriangles for bacterial biofilm inhibition. BIOFOULING 2022; 38:965-983. [PMID: 36519335 DOI: 10.1080/08927014.2022.2156286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable in vitro enzymatic biodegradation of composite hydrogels. The antibacterial activity of AgNT-hydrogel was tested against planktonic and biofilm-forming Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. For all the strains, AgNT-hydrogel showed a dose-dependent decrease in bacterial growth. The addition of AgNT-hydrogels (40-80 mg ml-1) caused 87% inhibition of planktonic biomass and up to 74% reduction in biofilm formation. Overall, this study proposes a promising approach for designing antibacterial composite hydrogels to mitigate various forms of bacterial infection.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, India
| | - Shruti Agrawal
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Amaral RG, de Andrade LRM, Andrade LN, Loureiro KC, Souto EB, Severino P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. MICROMACHINES 2022; 13:mi13071137. [PMID: 35888956 PMCID: PMC9315767 DOI: 10.3390/mi13071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022]
Abstract
Natural polysaccharides are structures composed of highly diversified biological macromolecules whose properties have been exploited by a diversity of industries. Until 2018, the polysaccharides market raised more than US $ 12 billion worldwide, while an annual growth forecast of 4.8% is expected by 2026. The food industry is largely responsible for the consumption of this plant-source material, produced by microbiological fermentation. Among the used polysaccharides, gums are hydrocolloids obtained from a variety of sources and in different forms, being composed of salts of calcium, potassium, magnesium and sugar monomers. Their non-toxicity, hydrophilicity, viscosity, biodegradability, biocompatibility and sustainable production are among their main advantages. Although Brazil is amongst the largest producers of cashew gum, reaching 50 tons per year, the polysaccharide is not being used to its full potential, in particular, with regard to its uses in pharmaceuticals. Cashew gum (CG), obtained from Anacardium occidentale L., caught the attention of the industry only in 1970; in 1990, its production started to grow. Within the Brazilian academy, the groups from the Federal University of Ceará and Piauí are devoting the most efforts to the study of cashew gum, with a total of 31 articles already published. The number of patents in the country for innovations containing cashew tree gum has reached 14, including the technological process for the purification of cashew tree gum, comparison of physical and chemical methods for physicochemical characterizations, and optimum purification methodology. This scenario opens a range of opportunities for the use of cashew gum, mainly in the development of new pharmaceutical products, with a special interest in nanoparticles.
Collapse
Affiliation(s)
- Ricardo G. Amaral
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil;
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil;
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe, Lagarto, Sergipe 49400-000, Brazil;
| | - Kahynna C. Loureiro
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.B.S.); (P.S.)
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
- Correspondence: (E.B.S.); (P.S.)
| |
Collapse
|
17
|
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. NANOMATERIALS 2022; 12:nano12101629. [PMID: 35630851 PMCID: PMC9146518 DOI: 10.3390/nano12101629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed.
Collapse
|
18
|
Comparative Study of Polysaccharide-Based Hydrogels: Rheological and Texture Properties and Ibuprofen Release. Gels 2022; 8:gels8030168. [PMID: 35323281 PMCID: PMC8951473 DOI: 10.3390/gels8030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Polysaccharides are attractive gelling agents in pharmacy due to their safety, biocompatibility, biodegradability, relatively easy way of preparation, and low price. Due to their variable physical-chemical properties, polysaccharides have potentialities to be used for designing new drug delivery systems for controlled drug release. In this comparative study, rheological and texture properties as well as the in vitro release of model drug ibuprofen (IBU) with 11 polysaccharide-based hydrogels were investigated. The in vitro release of IBU significantly differed between (i) neutral (hydroxy/alkylcelluloses), (ii) anionic (carboxyalkylcellulose and its sodium salt, tragacanth, carrageenan, xanthan gum), and (iii) cationic (chitosans) hydrogels due to different contribution of provided interactions and viscosity within the hydrogel groups. The drug release kinetics of each hydrogel system was evaluated for five kinetic models. Several combinations of cationic hydrogels with neutral or anionic ones were performed to illustrate possibilities of providing modified IBU release profiles. In this context, chitosan was presented as an effective modifier of diffusion profiles for negatively charged drugs formulated into combined polymeric systems, providing their prolonged release. The most appropriate hydrogel for the topical application (i.e., providing favorable rheological and texture properties along with the highest drug release) was selected from a studied series of polysaccharide-based hydrogels.
Collapse
|
19
|
Mallakpour S, Azadi E, Hussain CM. Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: The important role of nanoparticles and layered double hydroxides. Int J Biol Macromol 2021; 193:183-204. [PMID: 34695491 DOI: 10.1016/j.ijbiomac.2021.10.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Drug delivery systems are explained as methods to deliver a specific drug to desired organs, tissues, and cells for drug release to diseases treatment. Recently, considerable development has been interested in stimuli-responsive nano-systems, which respond to the essential pathological and physicochemical issues in diseased sites. During the last decades, researchers in the world presented, investigated, and implemented novel different nanomaterials with a focus on developing drug delivery. Polysaccharides including chitosan, alginate, hyaluronic acid, gums, and cellulose, as natural bio-materials, are suitable candidates for designing and formulations of these nano-systems because of the outstanding merits such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. On the other side, nanoparticles including metals (Au, Ag), metal oxides (Fe3O4, ZnO, CuO), or non-metal oxides (SiO2) and also, layered double hydroxides nanostructures have appealed significant consideration in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, and also proper magnetic characteristics. This comprehensive review provides an overview of current advancements in drug delivery strategies, and manufacturing methods using chitosan, alginate, hyaluronic acid, gums, and also, metals, metal oxides, non-metal oxides, and LDHs for delivery system uses.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
20
|
Nagaraja K, Krishna Rao KSV, Zo S, Soo Han S, Rao KM. Synthesis of Novel Tamarind Gum- co-poly(acrylamidoglycolic acid)-Based pH Responsive Semi-IPN Hydrogels and Their Ag Nanocomposites for Controlled Release of Chemotherapeutics and Inactivation of Multi-Drug-Resistant Bacteria. Gels 2021; 7:237. [PMID: 34940297 PMCID: PMC8701875 DOI: 10.3390/gels7040237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer-Peppas. These release data were best fitted with the Korsemeyer-Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.
Collapse
Affiliation(s)
- Kasula Nagaraja
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Kummari S. V. Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Kummara Madhususdana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
21
|
The depression behavior and mechanism of tragacanth gum on chalcopyrite during Cu-Mo flotation separation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Effective adsorption of methylene blue dye from water solution using renewable natural hydrogel bionanocomposite based on tragacanth gum: Linear-nonlinear calculations. Int J Biol Macromol 2021; 187:319-324. [PMID: 34298053 DOI: 10.1016/j.ijbiomac.2021.07.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023]
Abstract
Today, hydrogels opened new windows to the high-tech due to their amazing features. Thus, we applied hydrogel nanocomposite (HNC) made of tragacanth gum (a kind of polysaccharide) and CaCO3 nanoparticles to remove methylene blue dye (MBD) from the water solution. We used nonlinear and linear isotherms and kinetics as well as thermodynamics to uncover the adsorption mechanism. The results showed that the hydrogel could remove 80% of MBD. Besides, the linear form of the pseudo-second-order kinetic model fits well with the results, showing chemical interactions. We found that this process follows both Sips and Redlich-Peterson models by applying nonlinear and linear isotherm models. The maximum adsorption capacities from nonlinear and linear Sips were 1401 and 2145 mg/g, respectively. Based on the thermodynamic equations, the adsorption of MBD onto HNC was physiochemical and exothermic. According to the phenomenological calculations, diffusion from the bulk (or film diffusion, Df = 1.2 × 10-8 cm2/s) is the primary mechanism.
Collapse
|
23
|
Karmakar M, Mondal H, Ghosh NN, Chattopadhyay PK, Singha NR. Synthesis of gum tragacanth-grafted pentapolymer hydrogels for As(III) exclusion: Roles of microwaves, RSM optimization, and DFT studies. Int J Biol Macromol 2021; 184:909-925. [PMID: 34144070 DOI: 10.1016/j.ijbiomac.2021.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
Microwave assisted homogeneous heating, selectivity in radical formation, and the faster polymerization facilitate the synthesis, structures, properties, and the higher branching associated stability of multifunctional multipolymers. Thus, the optimum gum tragacanth (GMTR)-grafted pentapolymer hydrogel/ HG2 was synthesized from three monomers, i.e., cis-butenedioic acid (cBDA), N-hydroxymethylacryalamide (NHMAm), and 2-(methacryloyloxy)ethanol (MAOE), and in situ generated 2-(3-((hydroxymethyl)amino)-3-oxopropoxy)ethyl-2-methylbutanoate (CM1) and 2-hydroxyethyl 3-(N-(hydroxymethyl)-2-methylbutanamido)-2-methylpropanoate (CM2) comonomers through microwave assisted facile polymerization in aqueous medium. Here, twenty-one GMTR-grafted-[cBDA-co-CM1-co-NHMAm-co-CM2-co-MAOE/ HG1] hydrogels were prepared by using variable amounts of synthesis parameters, of which the optimum HG2 was chosen for the scale-up repetitive As(III)-exclusion. RSM was used to measure the optimum power-temperature-time of microwave irradiation. The structures of HG1, HG2, and As(III)-adsorbed HG2/ As(III)-HG2, in situ anchored comonomers, GMTR-grafting, reusability, thermostability, and surface phenomena were comprehended by XPS, NMR, UV-vis, FTIR, TG, XRD, DLS, and SEM analyses; pHPZC; network parameters; and thermodynamic variables. The geometries, electronic structures, and variable coordinations of As(III) with HG2 were investigated through DFT studies of HG2 and As(OH)3-HG2. The highest exclusion efficiency of 25 mg HG2 within 5-100 mg L-1 As(III) and at 298 K was 192.91 mg g-1, which was significantly higher than that of HG1.
Collapse
Affiliation(s)
- Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, NH12, Mokdumpur, Malda, West Bengal 732103, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|