1
|
Wang W, Liang J, Wu Y, Li W, Huang X, Li Z, Zhang X, Zou X, Shi J. Fish freshness monitoring based on bilayer cellulose acetate/polyvinylidene fluoride membranes containing ZIF-8 loaded curcumin. Food Chem 2025; 463:141054. [PMID: 39260177 DOI: 10.1016/j.foodchem.2024.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
This study presented a dual-layer freshness indicator film produced through electrospinning, combining cellulose acetate and polyvinylidene fluoride with zeolitic imidazolate framework-8 (ZIF-8) loaded with curcumin as the indicator. Our findings demonstrated that ZIF-8 effectively preserved its metal-organic framework structure during curcumin loading, ensuring the inherent color-changing ability of curcumin. The resulting colorimetric film exhibited altered tensile properties and increased water vapor permeability. Improved light stability and storage performance were observed. Compared to single-layer films, the dual-layer structure improved the hydrophilicity and stability of the indicator film. Importantly, the introduced indicator label efficiently captured the dynamic changes of TVB-N during freshness monitoring, providing comprehensive visual information for assessing fish freshness. The synergistic properties of ZIF-8, curcumin, and the dual-layer film structure contributed to an advanced freshness indicator system, providing a multifunctional and effective approach for real-time freshness assessment of fish freshness.
Collapse
Affiliation(s)
- Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jing Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenlong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang H, Shi T, Ma J, Meng S, Wei Z, Sun Y, Wang H, Zhou M. Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria. Int J Biol Macromol 2025; 295:139584. [PMID: 39788251 DOI: 10.1016/j.ijbiomac.2025.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping. Furthermore, varying concentrations of PA (0.3 %, 0.4 %, 0.5 %, and 0.6 % w/w) were integrated into the CS matrix to preparate the CS/PA nanocomposite film. The experimental data demonstrated a significant enhancement (p < 0.05) in the tensile strength and elongation at break of the nanocomposite films, while water vapor permeability and water solubility significantly decreased (p < 0.05) as the PA content increased. Additionally, the CS/PA film showed good antibacterial properties against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Notably, the CS/PA film effectively retarded the spoilage of fresh fish slices. The silver migration from the CS/PA film, measured at 33.02 μg/L, was found to be within the permissible limits set by the USEPA. Consequently, the CS/PA nanocomposite film holds immense promise for applications in food packaging industry.
Collapse
Affiliation(s)
- Huajuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Tian Shi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiale Ma
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shutong Meng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ziyu Wei
- Public Inspection and Testing Center of Xianning, Xianning 437003, China
| | - Ying Sun
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Hongxun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| |
Collapse
|
3
|
Viscusi G, Lamberti E, Angilè F, Di Stasio L, Gerardi C, Giovinazzo G, Vigliotta G, Gorrasi G. Smart pH-sensitive indicators based on rice starch/pectin/alginate loading Lambrusco pomace extract and curcumin to track the freshness of pink shrimps. Int J Biol Macromol 2024; 291:139085. [PMID: 39716712 DOI: 10.1016/j.ijbiomac.2024.139085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
This research is focused on the formulation and testing of green visual pH-sensitive indicators based on natural extracts from Curcuma Longa (CUR) and Lambrusco wine pomace (LAM), an Italian wine variety, incorporated into rice starch/pectin/alginate matrixes for non-destructively detecting shrimps freshness in real-time. The effect of the mixed indicators and their synergic combination on the properties and performances of indicators was investigated. Both the extracts and their combination showed pronounced pH responsiveness. Films were widely characterized in terms of morphological, barrier, spectroscopic, thermal and mechanical properties. The presence of extracts slightly reduced the transparency of the films while the film with both the extracts exhibited the highest Young's modulus (14.17 MPa), lowest moisture content (27.67 %) and a WVP value (0.79 g m m-2 s-1 Pa-1) intermediate between the Lambrusco extract loaded film and the curcumin based one. Moreover, the pH-sensitive systems showed a noticeable antioxidant activity (96 % for LAM/CUR film) and enhanced antibacterial activity toward E. coli and S. aureus compared to pristine films. Besides, the mixed indicator-based film showed high sensitivity to ammonia (68 %) determining an ΔE value easily detectable by the human eye. Finally, the films were applied as cheap visual indicators for monitoring the freshness of packaged fresh shrimps over time stored at T = 4 °C and T = 25 °C through the colourimetric variation induced by pH changes. The TVB-N value, which was correlated to the microbial count for shrimps over time, reached the rejection limit at 33 h for T = 25 °C and 54 h for T = 4 °C. The colour changes were recorded simultaneously and the turning to deeper colours indicated the decomposition of proteins to organic amines and the spoilage of food. Results show that the produced films provide easily detectable colour changes during food spoilage proving that, being fabricated from natural sources, they represent novel and sustainable tools for multi-purpose intelligent food packaging applications.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Federica Angilè
- National Research Council-Institute of Science of Food Production (CNR-ISPA), via Monteroni, 73100 Lecce, Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmela Gerardi
- National Research Council-Institute of Science of Food Production (CNR-ISPA), via Monteroni, 73100 Lecce, Italy
| | - Giovanna Giovinazzo
- National Research Council-Institute of Science of Food Production (CNR-ISPA), via Monteroni, 73100 Lecce, Italy
| | - Giovanni Vigliotta
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Ghanbar Soleiman Abadi F, Bazargani‐Gilani B, Emamifar A, Nourian A. Beet Root Peel Extract as a Natural Cost-Effective pH Indicator and Food Preservative in Edible Film: Shelf Life Improvement of Cold-Stored Trout Fillet. Food Sci Nutr 2024; 12:10561-10575. [PMID: 39723084 PMCID: PMC11666831 DOI: 10.1002/fsn3.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.87), and total phenolic content (360.50 mg GAE/g) of ethanolic BRPE were higher than aqueous extract. Silver nanoparticles were biosynthesized using silver nitrate reduction by chitosan, confirmed by UV-Visible spectroscopy, optical and scanning electron microscope images, and X-ray diffraction analysis. The highest tensile strength (4.20 MPa) and elongation at break (118%) belonged to the CP-BRPE film, and the lowest water vapor permeability (2.45 10-5 g/s/m/P) was related to the CP-nAg film. Also, the lowest total viable count (6.17 log CFU/g), psychrotrophic bacteria (6.27 log CFU/g), Enterobacteriaceae (4.9 log CFU/g), pH (5.66), total volatile basic-nitrogen (TVB-N) (22.1 mg/100 g of fish), and thiobarbituric acid reactive substances (TBARS) (0.705 mg MDA/kg of fish) values of the packaged trout fillets were significantly (p ≤ 0.05) observed in CP-BRPE-gnAg treatment among the other treatments at the end of the storage period, and CP-gnAg, CP-BRPE, and CP treatments were in the next ranks, respectively. Colorimetric analysis of the used films showed that the films containing BRPE depicted color spectra of red to yellow at the same time as the spoilage symptoms initiated in the packaged fillets. It is concluded that BRPE not only increased the preservative effects of chitosan-polyvinyl alcohol film containing green silver nanoparticles but also can be considered as a natural cost-effective spoilage indicator of the rainbow trout fillets during cold storage time.
Collapse
Affiliation(s)
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
5
|
Yang L, Yuan QY, Lou CW, Lin JH, Li TT. Recent Advances of Cellulose-Based Hydrogels Combined with Natural Colorants in Smart Food Packaging. Gels 2024; 10:755. [PMID: 39727513 DOI: 10.3390/gels10120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging. In traditional smart food packaging, the indicator and the packaging bag substrate have different degrees of toxicity. Smart food packaging that combines natural colorants and cellulose-based hydrogels is becoming more and more popular with consumers for being natural, non-toxic, environmentally friendly, and renewable. This paper reviews the synthesis methods and characteristics of cellulose-based hydrogels, as well as the common types and characteristics of natural pigments, and discusses the application of natural colorants and cellulose-based hydrogels in food packaging, demonstrating their great potential in smart food packaging.
Collapse
Affiliation(s)
- Lan Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qian-Yu Yuan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
7
|
Kafashan A, Babaei A. Development and investigation of a polysaccharide ternary nanocomposite based on basil seed gum/graphene oxide/anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 280:135537. [PMID: 39306180 DOI: 10.1016/j.ijbiomac.2024.135537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
A new pH-sensitive intelligent packaging system was developed composed of extracted and purified basil seed gum (BG) containing aqueous malva sylvestris extract (MS) and varying amounts of synthesized graphene oxide (GO). In the following, the characteristics of prepared films including spectroscopic, physio-mechanical, thermogravimetry, fracture-surface morphology, anthocyanin release, and pH and TVB-N sensitivity, were investigated. Our results revealed that the addition of 0.5 wt % MS into the BG matrix induced pH sensitivity to the film and resulted in a visible color change from pH 2.0 to 14.0; however, it reduced the thermal and physio-mechanical properties. In this regard, the effective presence of the optimum concentration of GO (0.25 wt%) in enhancing the mechanical and thermal properties of the BG-MS films was shown. Moreover, inspecting the release kinetics demonstrated a controllable release for BG-MS-GO film compared to the BG-MS film in 48 h. Furthermore, the total volatile basic nitrogen (TVB-N) content and pH value were shown to be highly correlated with the color changes of the freshness indicator film during the storage of salmon fillets at 25 °C for 36 h. Therefore, it was shown that BG-MS-GO film can be used as a highly effective freshness/spoilage indicator of proteinic products.
Collapse
Affiliation(s)
- Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| |
Collapse
|
8
|
Qin Y, Wang Y, Tang Z, Chen K, Wang Z, Cheng G, Chi H, Soteyome T. A pH-sensitive film based on chitosan/gelatin and anthocyanin from Zingiber striolatum Diels for monitoring fish freshness. Food Chem X 2024; 23:101639. [PMID: 39113745 PMCID: PMC11304880 DOI: 10.1016/j.fochx.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
As a new type of packaging method, the anthocyanin-based pH-sensitive indicator film has gained much attention owing to low cost, small size, and visually informative property. In this study, an intelligent film based on chitosan/gelatin (CG) matrix with Zingiber striolatum Diels (ZSD) anthocyanin for fish freshness monitoring was developed. The film properties, including thickness, moisture content, color, mechanical properties, UV-vis light barrier property, as well as pH and ammonia sensitivity, were evaluated. The CG-ZSD films exhibited a more compact structure when compared with the CG film. The CG-ZSD20 film showed the highest elongation at break (6.33 ± 0.62%) and lowest tensile strength (20.0 ± 0.58 MPa). FTIR spectra revealed the strong hydrogen bond interactions between ZSD and polymer matrix. Film incorporated with 15% anthocyanin extract has increased melting temperature at 118.9 °C, and a lower weight loss (13.8%) at melting temperature. In pH 1-14 buffer, the color of CG-ZSD films underwent a significant change from red to yellow-green. The CG-ZSD15 film was utilized for monitoring fish freshness and showed visible color changes from deep purple to brown. The total volatile basic nitrogen content and pH value changes of fish were closely related to the visual color changes in film. This demonstrated that the film was a highly pH-sensitive film for quantifying fish freshness in real-time.
Collapse
Affiliation(s)
- Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhenya Tang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650550, China
| | - Kejun Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
9
|
Liu T, Zheng N, Ma Y, Zhang Y, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Recent advancements in chitosan-based intelligent food freshness indicators: Categorization, advantages, and applications. Int J Biol Macromol 2024; 275:133554. [PMID: 38950804 DOI: 10.1016/j.ijbiomac.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With an increasing emphasis on food safety and public health, there is an ongoing effort to develop reliable, non-invasive methods to assess the freshness of diverse food products. Chitosan-based food freshness indicators, leveraging properties such as biocompatibility, biodegradability, non-toxicity, and high stability, offer an innovative approach for real-time monitoring of food quality during storage and transportation. This review introduces intelligent food freshness indicators, specifically those utilizing pH-sensitive dyes like anthocyanins, curcumin, alizarin, shikonin, and betacyanin. It highlights the benefits of chitosan-based intelligent food freshness indicators, emphasizing improvements in barrier and mechanical properties, antibacterial activity, and composite film solubility. The application of these indicators in the food industry is then explored, alongside a concise overview of chitosan's limitations. The paper concludes by discussing the challenges and potential areas for future research in the development of intelligent food freshness indicators using chitosan. Thus, chitosan-based smart food preservation indicators represent an innovative approach to providing real-time data for monitoring food quality, offering valuable insights to both customers and retailers, and playing a pivotal role in advancing the food industry.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Nan Zheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yaomei Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
10
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
11
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Shavisi N. Electrospun fiber mats based on chitosan-carrageenan containing Malva sylvestris anthocyanins: Physic-mechanical, thermal, and barrier properties along with application as intelligent food packaging materials. Int J Biol Macromol 2024; 266:131077. [PMID: 38531525 DOI: 10.1016/j.ijbiomac.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to encapsulate Malva sylvestris extract (MSE) into chitosan-carrageenan (CH-KC) fibers using the electrospinning technique and monitor the freshness of silver carp fillets during the refrigerated storage conditions for 8 days. The CH-KC + MSE 4 % fiber mats were red at pH values lower than 3, purple at pH 4-6, dark blue at pH 7, green at pH 8-10, and brown at pH 11-12. The tensile strength, elongation at break, water vapor permeability, oxygen transmission rate, moisture content, and water solubility of fabricated fiber mats were 7.71-11.02 MPa, 13.12 %-30.00 %, 7.35-20.01 × 10-4 g mm/m2 h Pa, 3.81-8.23 cm3/m2 h, 15.74 %-27.34 %, and 3.90 %-7.56 %, respectively. Regarding the potential application of a fabricated indicator for freshness monitoring of silver carp fillets, total viable count, psychrotrophic bacterial count, pH, and total volatile basic nitrogen reached 8.91 log CFU/g, 8.03 log CFU/g, 8.10, and 40.18 mg N/100 g at the end of the study, respectively. Meanwhile, the CH-KC + MSE 4 % fiber mat color changed from white to green. These findings suggest that CH-KC + MSE 4 % fiber mats can be further utilized in the food industry to control the freshness of refrigerated silver carp fillets.
Collapse
Affiliation(s)
- Nassim Shavisi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
13
|
Lau WN, Mohammadi Nafchi A, Zargar M, Rozalli NHM, Mat Easa A. Development and evaluation of Bauhinia Kockiana extract-incorporated sago starch intelligent film strips for real-time freshness monitoring of coconut milk. Int J Biol Macromol 2024; 260:129589. [PMID: 38296665 DOI: 10.1016/j.ijbiomac.2024.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The aim of this work was to fabricate an intelligent film using sago starch incorporated with the natural source of anthocyanins from the Bauhinia Kockiana flower and use it to monitor the freshness of coconut milk. The films were developed using the casting method that included the addition of the different concentrations (0, 5, 10, 15 mg) of Bauhinia Kockiana extract (BKE) obtained using a solvent. The anthocyanin content of Bauhinia Kockiana was 262.17 ± 9.28 mg/100 g of fresh flowers. The spectral characteristics of BKE solutions, cross-section morphology, physiochemical, barrier, and mechanical properties, and the colour variations of films in different pH buffers were investigated. Films having the highest BKE concentration demonstrated the roughest structure and highest thickness (0.16 mm), moisture content (9.72 %), swelling index (435.83 %), water solubility (31.20 %), and elongation at break (262.32 %) compared to the other films. While monitoring the freshness of coconut milk for 16 h, BKE15 showed remarkable visible colour changes (from beige to dark brown), and the pH of coconut milk dropped from 6.21 to 4.56. Therefore, sago starch film incorporated with BKE has excellent potential to act as an intelligent pH film in monitoring the freshness of coconut milk.
Collapse
Affiliation(s)
- Weng Nyan Lau
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Norazatul Hanim Mohd Rozalli
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
14
|
Khaledian Y, Moshtaghi H, Shahbazi Y. Development and characterization of smart double-layer nanofiber mats based on potato starch-turnip peel anthocyanins and guar gum-cinnamaldehyde. Food Chem 2024; 434:137462. [PMID: 37734152 DOI: 10.1016/j.foodchem.2023.137462] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
This experiment was conducted with the objectives of developing bilayer nanofiber mats based on potato starch-turnip peel extract (PS-TPE) and guar gum-cinnamaldehyde (GG-CA) for freshness monitoring and enhancing the quality of lamb meat during cooled storage conditions. Encapsulating CA/TPE into the nanofibers resulted in reduced tensile strength, water vapor permeability, moisture content, and water solubility. Colorimetric nanofibers, including PS-GG-TPE 6%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1%, presented red color at pH 1-4, purplish red at pH 5-7, green at pH 8-10, and brown at pH 11-12. The color of PS-GG-TPE 6% nanofiber mats changed from white to purplish red, signaling that the lamb meats had turned from fresh to spoiled. PS-GG-CA 1%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1% nanofibers have the potential to be utilized to control the growth of spoilage-related microorganisms for extending the shelf-life of fresh lamb meat under cooled storage conditions up to 13 days.
Collapse
Affiliation(s)
- Yousef Khaledian
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Hamdollah Moshtaghi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
15
|
Rezaei F, Tajik H, Shahbazi Y. Intelligent double-layer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata petal anthocyanins nanofibers to monitor food freshness. Int J Biol Macromol 2023; 252:126512. [PMID: 37633548 DOI: 10.1016/j.ijbiomac.2023.126512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The present study was conducted with the aim of fabricating smart bilayer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata extract nanofibers (CMC-CNC and PLA-VOE) for freshness monitoring of Pacific white shrimps, minced lamb meat, chicken fillets, and rainbow trout fillets, during refrigerated storage conditions. The fabricated indicators based on CMC-PLA-VOE 5%, CMC-CNC 1%-PLA-VOE 5%, and CMC-CNC 3%-PLA-VOE 5% presented remarkable color changes in pH 1-12 buffer solutions, including red at pH 1-6, violet at pH 7-8, green at pH 9-10, and brown at pH 11-12. Significantly lower water vapor permeability and oxygen transmission rate of prepared polymers were found in comparison with the control groups (P < 0.05). Regarding the monitoring of food samples in real-time, the samples spoiled after 3 days, evidenced by total viable count, psychrotrophic bacterial count, total volatile basic nitrogen, and pH values of 7.17-7.54 log CFU/g, 5.68-6.23 log CFU/g, 25.14-28.12 mg N/100 g, and 7.10-7.66, respectively. Meanwhile, the noticeable color change of prepared indicators from white to violet (day 3) and finally dark violet (day 7) was observed, indicating a potential application in intelligent packaging for real-time control of the freshness of perishable food samples.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
16
|
Jiang K, Li J, Brennan M, Brennan C, Chen H, Qin Y, Yuan M. Smart Indicator Film Based on Sodium Alginate/Polyvinyl Alcohol/TiO 2 Containing Purple Garlic Peel Extract for Visual Monitoring of Beef Freshness. Polymers (Basel) 2023; 15:4308. [PMID: 37959988 PMCID: PMC10649262 DOI: 10.3390/polym15214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to prepare a novel pH-sensitive smart film based on the addition of purple garlic peel extract (PGE) and TiO2 nanoparticles in a sodium alginate (SA)/polyvinyl alcohol (PVA) matrix to monitor the freshness of beef. FT-IR spectroscopy revealed the formation of stronger interaction forces between PVA/SA, PGE, and TiO2 nanoparticles, which showed good compatibility. In addition, the addition of PGE improved the tensile strength and elongation at break of the composite film, especially in different pH environments, and the color response was obvious. The addition of 1% TiO2 nanoparticles significantly improved the mechanical properties of the film, as well as the light barrier properties of the film. PGE could effectively be uniformly dispersed into the composite film, but it also had a certain slow-release effect on the release of PGE. PGE had high sensitivity under different pH conditions with rich color changes, and the color showed a clear color change from red to yellow-green when the pH increased from 1 to 14. The same change was observed when it was added to the film. In particular, by applying this film to the process of beef preservation, we judged the freshness of beef by monitoring the changes in the TVB-N value and pH value during the storage process of beef and found that the film showed obvious color changes during the storage process of beef, from blue (indicating freshness) to red (indicating non-freshness), and finally to yellow-green (indicating deterioration), which indicated that the color change of the film and the freshness of the beef maintained a highly consistent.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Jiang Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
17
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
18
|
Li C, Liu J, Li W, Liu Z, Yang X, Liang B, Huang Z, Qiu X, Li X, Huang K, Zhang X. Biobased Intelligent Food-Packaging Materials with Sustained-Release Antibacterial and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37966-37975. [PMID: 37503816 DOI: 10.1021/acsami.3c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
It has been widely accepted that sustainable polymers derived from renewable resources are able to replace the short-turnover petroleum-based materials and reduce environmental impact in the future. However, their hydrophilic chemical structures rich with oxygen groups could lead to easy growth of bacteria, which greatly limit their applications in packaging materials. Here, we present an intelligent food-packaging material with sustained-release antibacterial and real-time monitoring ability based on totally biobased contents. In detail, sodium alginate with Artemisia argyi emission oil (encapsulated in gelatin-Arabic gum microcapsules) and citric acid-sourced pH-responsive carbon quantum dots (CQDs) are coated on bamboo cellulose papers. The obtained biobased composite material (almost 100% biocarbon content) with antibacterial ability is able to extend the shelf life of fresh shrimps and can be biodegraded. Moreover, owing to the introduction of CQDs, the composite can rapidly (within 1 s) detect slight pH variations (response pH ∼5, 10-9 mol/L of OH-) through an obvious color change (hue value from 305 to 355°). The developed strategy may open up new opportunities in the design of multifunctional biobased composites for intelligent applications.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wanhe Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenghong Liu
- Guangxi Xinggui Paper Co., Ltd., Laibin 546128, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Kai Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Liu X, Song X, Gou D, Li H, Jiang L, Yuan M, Yuan M. A polylactide based multifunctional hydrophobic film for tracking evaluation and maintaining beef freshness by an electrospinning technique. Food Chem 2023; 428:136784. [PMID: 37429236 DOI: 10.1016/j.foodchem.2023.136784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
A nanofiber film was prepared by a facile electrospinning technique using polylactide (PLA), butterfly pea flower extract (BPA) and cinnamaldehyde (CIN). The as-prepared film shows the prominent antioxidative, antibacterial, colorimetric and hydrophobic properties so that the beef freshness can be monitored and maintained up to 6 days at 4 °C simultaneously. Besides, the nanofiber structure endows the film with a fast color responsiveness under acidic-alkaline atmospheres with different concentrations. Moreover, this film exhibits higher tensile strength (9.56 Mpa) than that of the pure PLA electrospinning film (4.40 Mpa). Especially the introduction of the BPA effectively boosts the antimicrobial ability of the CIN. The freshness, sub-freshness and spoilage levels of the beef can be easily testified by observing the color difference change of the film. So the polylactide based multifunctional film as an intelligent packaging has an excellent potential for the sub-freshness detection of meat.
Collapse
Affiliation(s)
- Xinxin Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Xiushuang Song
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Dejiao Gou
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Lin Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Minglong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China.
| |
Collapse
|
20
|
Yan J, Yu H, Yang Z, Li L, Qin Y, Chen H. Development of Smart Films of a Chitosan Base and Robusta Coffee Peel Extract for Monitoring the Fermentation Process of Pickles. Foods 2023; 12:2337. [PMID: 37372548 DOI: 10.3390/foods12122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Smart film is widely used in the field of food packaging. The smart film was prepared by adding anthocyanin-rich Robusta coffee peel (RCP) extract into a chitosan (CS)-glycerol (GL) matrix by a solution-casting method. By changing the content of RCP (0, 10%, 15% and 20%) in the CS-GL film, the related performance indicators of CS-GL-RCP films were studied. The results showed that the CS-GL-RCP films had excellent mechanical properties, and CS-GL-RCP15 film maintained the tensile strength (TS) of 16.69 MPa and an elongation-at-break (EAB) of 18.68% with RCP extract. CS-GL-RCP films had the best UV-vis light barrier property at 200-350 nm and the UV transmittance was close to 0. The microstructure observation results showed that CS-GL-RCP films had a dense and uniform cross section, which proved that the RCP extract had good compatibility with the polymer. In addition, the CS-GL-RCP15 film was pH-sensitive and could exhibit different color changes with different pH solutions. So, the CS-GL-RCP15 film was used to detect the fermentation process of pickles at 20 ± 1 °C for 15 days. The pickles were stored in a round pickle container after the boiling water had cooled. The color of the CS-GL-RCP15 film changed significantly, which was consistent with the change of pickles from fresh to mature. The color of the smart film changed significantly with the maturity of pickles, and the difference of ΔE of film increased to 8.89 (15 Days), which can be seen by the naked eye. Therefore, CS-GL-RCP films prepared in this study provided a new strategy for the development of smart packaging materials.
Collapse
Affiliation(s)
- Jiatong Yan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Hongda Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhouhao Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Lin Li
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523830, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| |
Collapse
|
21
|
Hasanah NN, Mohamad Azman E, Rozzamri A, Zainal Abedin NH, Ismail-Fitry MR. A Systematic Review of Butterfly Pea Flower ( Clitoria ternatea L.): Extraction and Application as a Food Freshness pH-Indicator for Polymer-Based Intelligent Packaging. Polymers (Basel) 2023; 15:polym15112541. [PMID: 37299340 DOI: 10.3390/polym15112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The butterfly pea flower (Clitoria ternatea L.) (BPF) has a high anthocyanin content, which can be incorporated into polymer-based films to produce intelligent packaging for real-time food freshness indicators. The objective of this work was to systematically review the polymer characteristics used as BPF extract carriers and their application on various food products as intelligent packaging systems. This systematic review was developed based on scientific reports accessible on the databases provided by PSAS, UPM, and Google Scholar between 2010 and 2023. It covers the morphology, anthocyanin extraction, and applications of anthocyanin-rich colourants from butterfly pea flower (BPF) and as pH indicators in intelligent packaging systems. Probe ultrasonication extraction was successfully employed to extract a higher yield, which showed a 246.48% better extraction of anthocyanins from BPFs for food applications. In comparison to anthocyanins from other natural sources, BPFs have a major benefit in food packaging due to their unique colour spectrum throughout a wide range of pH values. Several studies reported that the immobilisation of BPF in different polymeric film matrixes could affect their physicochemical properties, but they could still effectively monitor the quality of perishable food in real-time. In conclusion, the development of intelligent films employing BPF's anthocyanins is a potential strategy for the future of food packaging systems.
Collapse
Affiliation(s)
- Nur Nabilah Hasanah
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Ashari Rozzamri
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nur Hanani Zainal Abedin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
22
|
Chen K, Li J, Li L, Wang Y, Qin Y, Chen H. A pH indicator film based on sodium alginate/gelatin and plum peel extract for monitoring the freshness of chicken. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Pang G, Zhou C, Zhu X, Chen L, Guo X, Kang T. Colorimetric indicator films developed by incorporating anthocyanins into chitosan‐based matrices. J Food Saf 2023. [DOI: 10.1111/jfs.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Guiyin Pang
- School of Food and Biological Engineering Chengdu University Chengdu City China
| | - Chuang Zhou
- School of Food and Biological Engineering Chengdu University Chengdu City China
| | - Xudong Zhu
- School of Food and Biological Engineering Chengdu University Chengdu City China
| | - Lianmei Chen
- School of Food and Biological Engineering Chengdu University Chengdu City China
| | - Xiaoqiang Guo
- School of Food and Biological Engineering Chengdu University Chengdu City China
| | - Tairan Kang
- School of Food and Biological Engineering Chengdu University Chengdu City China
| |
Collapse
|
24
|
Akhila K, Sultana A, Ramakanth D, Gaikwad KK. Monitoring freshness of chicken using intelligent pH indicator packaging film composed of polyvinyl alcohol/guar gum integrated with Ipomoea coccinea extract. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Wang D, Wang X, Sun Z, Liu F, Wang D. A fast-response visual indicator film based on polyvinyl alcohol/methylcellulose/black wolfberry anthocyanin for monitoring chicken and shrimp freshness. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
27
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 2022; 219:897-906. [PMID: 35963350 DOI: 10.1016/j.ijbiomac.2022.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.
Collapse
|
29
|
Application of pH-indicating film containing blue corn anthocyanins on corn starch/polyvinyl alcohol as substrate for preservation of tilapia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Bai MY, Zhou Q, Zhang J, Li T, Cheng J, Liu Q, Xu WR, Zhang YC. Antioxidant and antibacterial properties of essential oils-loaded β-cyclodextrin-epichlorohydrin oligomer and chitosan composite films. Colloids Surf B Biointerfaces 2022; 215:112504. [PMID: 35453062 DOI: 10.1016/j.colsurfb.2022.112504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023]
Abstract
Chitosan (CS) is becoming increasingly popular in food packaging due to its natural degradability and great film-forming properties. Nevertheless, its poor antibacterial properties and inadequate antioxidant properties prevent it from being used effectively. In this study, β-cyclodextrin-epichlorohydrin (β-CD-EP) oligomers were prepared and encapsulated with natural essential oils cinnamaldehyde and thymol, and then the inclusion complexes (IC) were incorporated into chitosan in various contents to afford a series of CS-IC composite films. The impacts of IC on the morphological, mechanical, thermal, and water resistance properties, antioxidant and antibacterial activities of chitosan films, as well as the loading and sustained release behavior of IC, were thoroughly examined. The results turned out that the essential oils were well-loaded with high encapsulation efficiency and showed a significant slow-release effect. It was also found that the tensile strength and the elongation at break decreased with increasing IC contents, while the thermal stability was enhanced. The incorporation of IC dramatically promoted the antioxidant and antibacterial properties of the chitosan films towards Gram-positive bacteria. Based on our findings, chitosan films containing essential oils-loaded β-CD-EP oligomers may serve as an effective food packaging material.
Collapse
Affiliation(s)
- Mei-Yan Bai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China; Hainan Health Management College, Haikou 570228, China
| | - Ting Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jun Cheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
31
|
Cheng M, Yan X, Cui Y, Han M, Wang X, Wang J, Zhang R. An eco-friendly film of pH-responsive indicators for smart packaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 2022; 277:118876. [PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - A A Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and vit. Medicine, Qassim University, 51452 Burydah, Saudi Arabia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
37
|
Dai X, Li S, Li S, Ke K, Pang J, Wu C, Yan Z. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Int J Biol Macromol 2022; 202:407-417. [PMID: 34999048 DOI: 10.1016/j.ijbiomac.2021.12.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
In this study, chitosan (CS) film containing covalent organic frameworks (COFs) immobilized silver nanoparticles (AgNPs) were developed for food packaging with improved antibacterial activities and film properties. COFs-AgNPs were fabricated via in-situ synthesis of immobilizing AgNPs on COFs. Transmission electron microscope, Zeta potential, X-ray diffraction, element mapping and Fourier transform infrared spectroscopy confirmed the successful fabrication of COFs-AgNPs, and COFs-AgNPs showed superior antibacterial activity against S. aureus and E. coli. Furthermore, the as-prepared COFs-AgNPs composite was further used to fabricate CS composite films (CS/COFs-AgNPs) by a solution casting method. The findings showed that the tensile strength of the nanocomposite films enhanced dramatically with the increase of the COFs-AgNPs content, while the UV-visible light barrier property, water swelling and solubility properties, and water vapor permeability (WVP) decreased significantly. Not only that, the CS/COFs-AgNPs nanocomposite films also showed outstanding antibacterial activity and effectively prolonged the storage time of white crucian carp (Carassius auratus). As a result, CS/COFs-AgNPs nanocomposite films show great potential in active food packaging.
Collapse
Affiliation(s)
- Xinxian Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhan Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keqin Ke
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiming Yan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Wang H, Wan T, Wang H, Wang S, Li Q, Cheng B. Novel colorimetric membranes based on polylactic acid-grafted-citrated methacrylated urethane (PLA-CMU) to monitor cod freshness. Int J Biol Macromol 2022; 194:452-460. [PMID: 34822833 DOI: 10.1016/j.ijbiomac.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Halochromic agent is easy to fall off from the surface of colorimetric membranes during fish freshness monitoring, which would decay the test accuracy. In order to increase its anchoring, citrated methacrylated urethane (CMU) synthesized by using tributyl citrate, β-hydroxyethyl methacrylate and diphenyl-methane-diisocyanate as a halochromic agent was grafted on polylactic acid (PLA). The CMU grafted PLA (PLA-CMU) together with tetrabutylammonium chloride (TBAC) prepared colorimetric membranes via electrospinning. 1H NMR and FTIR analysis showed successful bonding between CMU and PLA, and PLA-CMU grafting efficiency reached to the maximum value of 11.15%. Moreover, DSC confirmed that PLA-CMU existed low cold-crystallization temperature due to the excellent compatibility of CMU with PLA, which enhanced the anchoring of CMU effectively. Nanofiber-based PLA-CMU/TBAC colorimetric membrane enhanced the probability of molecules being captured due to its porous structure and large specific surface area. In addition, the increase in hydrophilicity of the membrane can provide a microenvironment for liquid phase reaction, exhibiting obvious color-changing sensitivity during cod freshness monitoring, from white color to light orange or pink with the deterioration of cod at 25 °C and 4 °C respectively. The results demonstrate PLA-CMU/TBAC colorimetric membranes would provide a simple and promising strategy for monitoring fish freshness.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Tong Wan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Hao Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| | - Quanxiang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| |
Collapse
|
39
|
Antibacterial Properties of Coaxial Spinning Membrane of Methyl ferulate/zein and Its Preservation Effect on Sea Bass. Foods 2021; 10:foods10102385. [PMID: 34681434 PMCID: PMC8535954 DOI: 10.3390/foods10102385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Methyl ferulate is a new natural antibacterial agent with strong activity and low toxicity. It has good application prospects in food preservation. In this paper, the antibacterial activity of methyl ferulate against Shigella putrefaciens was verified, and it was embedded into zein by electrospinning technology to prepare fiber membranes. The addition of methyl ferulate could improve the tensile strength of zein fiber membrane and decrease the crystallinity of the membrane, which was mainly a physical combination. The fiber membrane improved the thermal stability of methyl ferulate. The water contact angle (WCA) decreased to 54.85°. The results showed that methyl ferulate in fiber membrane could be released slowly, gradually exerting its antibacterial activity. After coating perch with methyl ferulate/zein fiber membrane, the growth of microorganisms in perch meat was inhibited, and the pH value and total volatile basic nitrogen (TVB-N)content were effectively increased. In a word, methyl ferulate had antibacterial activity in the fiber film, which was able to achieve a sustained release effect in the process of fish packaging, prolonging its antibacterial activity, and having preservation effect on sea bass; thus, it could be used in food packaging.
Collapse
|
40
|
Yan J, Cui R, Tang Z, Wang Y, Wang H, Qin Y, Yuan M, Yuan M. Development of pH-sensitive films based on gelatin/chitosan/nanocellulose and anthocyanins from hawthorn (Crataegus scabrifolia) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ran R, Wang L, Su Y, He S, He B, Li C, Wang C, Liu Y, Chen S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J Food Sci 2021; 86:4594-4610. [PMID: 34392537 DOI: 10.1111/1750-3841.15884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/26/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
Intelligent pH-indicator films based on soy protein isolate (SPI) were prepared using pH-sensitive dyes (bromothymol blue and methyl red). The addition of mixed indicators imparts pH-indicator films with an appreciable microstructure, acceptable water resistance, and favorable optical properties. The incorporation of the mixed indicators did not lead to significant improvement in the mechanical properties of films due to weak ionic cross-linking by hydrogen bonding between the SPI macromolecules and low-molecular-weight indicators. Fourier-transform infrared spectroscopy indicated hydrogen bond-mediated intermolecular interactions, and scanning electron microscopy showed that BB/MR were well dispersed in the SPI film. The indicator addition hindered the sorption and passage of water molecules. The water vapor permeability, moisture sorption, moisture content, and total soluble matter were 4.32 to 6.12 ×10-12 g·cm/cm2 ·s·Pa, 36.70% to 73.33%, 25.28% to 44.11%, and 8.21% to 25.56%, respectively. Also, the addition of indicators reduced UV light transmittance with minimal effect on the transparency of the film. The presence of indicators enhanced the pH sensitivity, seen as a visible color reaction at different pHs (total color difference, ΔE > 5). When the pH-indicator film containing 8 ml/100 ml final film emulsions was used to monitor the fresh-cut apple freshness, a green color for fresh status was observed, which turned blue after 60 h. Collectively, our findings suggested that indicator-containing SPI films have the potential for monitoring the freshness of fruits. PRACTICAL APPLICATION: pH-indicator films can help consumers to identify the freshness of packaged food by a change in the color of the packaging material, which is easily visible to the unaided eye without the need for opening the packaging. This protects consumers' interests.
Collapse
Affiliation(s)
- Ruimin Ran
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Luyao Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuhang Su
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fujian Province, Fuzhou, China
| | - Shujian He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Binbin He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| |
Collapse
|