1
|
Li TT, Sun L, Zhong Y, Peng HK, Ren HT, Zhang Y, Lin JH, Lou CW. Silk fibroin/polycaprolactone-polyvinyl alcohol directional moisture transport composite film loaded with antibacterial drug-loading microspheres for wound dressing materials. Int J Biol Macromol 2022; 207:580-591. [PMID: 35218809 DOI: 10.1016/j.ijbiomac.2022.02.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Drug delivery technology can prevent wound infection and inflammatory reactions and accelerate wound healing and quality. In this paper, we propose preparing a multifunctional medical dressing to meet the various needs of people for dressing. A multi-layered composite nanofiber membrane was constructed using silk fibroin as the substrate, and mesoporous silica nanoparticles (MSN) with high adsorption properties were first prepared and then electrosprayed on silk fibroin (SF)/chitosan (CS) microspheres to form MSN-SF/CS microspheres with uniform distribution. Then the MSN-SF/CS microspheres were sprayed on the silk fibroin (SF)/polycaprolactone (PCL)-polyvinyl alcohol (PVA) unidirectional water-conducting composite nanofiber membrane. The test results showed that the encapsulation rate of bovine serum albumin (BSA) by MSN-SF/CS drug-loaded microspheres was 65.53% and the cumulative release rate in vitro was 54.46%. The results of in vitro experiments also showed its good antibacterial effect and good biocompatibility. To eliminate excess wound exudate and reduce inflammation, the cumulative unidirectional transport capacity (AOTC) of 651.75% was achieved by spraying the microspheres on an SF/PCL- PVA unidirectional water conductive composite membrane. This study could stimulate and promote the use of additional wound healing biomaterials in clinical medicine.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Li Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanqin Zhong
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407802, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan.
| |
Collapse
|