1
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BPH, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GKA. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. Nat Commun 2024; 15:10515. [PMID: 39627196 PMCID: PMC11615384 DOI: 10.1038/s41467-024-54408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assembly states and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L Sendker
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Stefan Bohn
- Helmholtz Munich Cryo-Electron Microscopy Platform, Helmholtz Munich, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany.
| |
Collapse
|
2
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BP, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GKA. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602260. [PMID: 39005358 PMCID: PMC11245102 DOI: 10.1101/2024.07.05.602260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assemblies and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L Sendker
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Stefan Bohn
- Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1 Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brain P Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| |
Collapse
|
3
|
Pathirage R, Favrot L, Petit C, Yamsek M, Singh S, Mallareddy JR, Rana S, Natarajan A, Ronning DR. Mycobacterium tuberculosis CitA activity is modulated by cysteine oxidation and pyruvate binding. RSC Med Chem 2023; 14:921-933. [PMID: 37252106 PMCID: PMC10211323 DOI: 10.1039/d3md00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/05/2023] [Indexed: 11/12/2023] Open
Abstract
As an adaptation for survival during infection, Mycobacterium tuberculosis becomes dormant, reducing its metabolism and growth. Two types of citrate synthases have been identified in Mycobacterium tuberculosis, GltA2 and CitA. Previous work shows that overexpression of CitA, the secondary citrate synthase, stimulates the growth of Mycobacterium tuberculosis under hypoxic conditions without showing accumulation of triacylglycerols and makes mycobacteria more sensitive to antibiotics, suggesting that CitA may play a role as a metabolic switch during infection and may be an interesting TB drug target. To assess the druggability and possible mechanisms of targeting CitA with small-molecule compounds, the CitA crystal structure was solved to 2.1 Å by X-ray crystallography. The solved structure shows that CitA lacks an NADH binding site that would afford allosteric regulation, which is atypical of most citrate synthases. However, a pyruvate molecule is observed within the analogous domain, suggesting pyruvate may instead be the allosteric regulator for CitA. The R149 and R153 residues forming the charged portion of the pyruvate binding pocket were mutated to glutamate and methionine, respectively, to assess the effect of mutations on activity. Protein thermal shift assay shows thermal stabilization of CitA in the presence of pyruvate compared to the two CitA variants designed to decrease pyruvate affinity. Solved crystal structures of both variants show no significant structural changes. However, the catalytic efficiency of the R153M variant increases by 2.6-fold. Additionally, we show that covalent modification of C143 of CitA by Ebselen completely arrests enzyme activity. Similar inhibition is observed using two spirocyclic Michael acceptor containing compounds, which inhibit CitA with ICapp50 values of 6.6 and 10.9 μM. A crystal structure of CitA modified by Ebselen was solved, but significant structural changes were lacking. Considering that covalent modification of C143 inactivates CitA and the proximity of C143 to the pyruvate binding site, this suggests that structural and/or chemical changes in this sub-domain are responsible for regulating CitA enzymatic activity.
Collapse
Affiliation(s)
- Rasangi Pathirage
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lorenza Favrot
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Cecile Petit
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Melvin Yamsek
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Sarbjit Singh
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
| | | | - Sandeep Rana
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Amarnath Natarajan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha NE 68198 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
4
|
Nishii M, Ito S, Osanai T. Citrate synthase from Cyanidioschyzon merolae exhibits high oxaloacetate and acetyl-CoA catalytic efficiency. PLANT MOLECULAR BIOLOGY 2023; 111:429-438. [PMID: 36884198 DOI: 10.1007/s11103-023-01335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.
Collapse
Affiliation(s)
- Maki Nishii
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan
| | - Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
5
|
Duan JX, Jiang HL, Guan XX, Zhang CY, Zhong WJ, Zu C, Tao JH, Yang JT, Liu YB, Zhou Y, Chen P, Yang HH. Extracellular citrate serves as a DAMP to activate macrophages and promote LPS-induced lung injury in mice. Int Immunopharmacol 2021; 101:108372. [PMID: 34810128 DOI: 10.1016/j.intimp.2021.108372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1β and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Hui-Ling Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cheng Zu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jin-Tong Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|