1
|
Cui FJ, Fu X, Sun L, Zan XY, Meng LJ, Sun WJ. Recent insights into glucans biosynthesis and engineering strategies in edible fungi. Crit Rev Biotechnol 2024; 44:1262-1279. [PMID: 38105513 DOI: 10.1080/07388551.2023.2289341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 12/19/2023]
Abstract
Fungal α/β-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/β-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/β-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| | - Xin Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| |
Collapse
|
2
|
Son J, Hwang Y, Hong EM, Schulenberg M, Chai H, Jo HG, Lee D. Effects of Dietary Yeast β-1,3/1,6-D-Glucan on Immunomodulation in RAW 264.7 Cells and Methotrexate-Treated Rat Models. Int J Mol Sci 2024; 25:11020. [PMID: 39456801 PMCID: PMC11508109 DOI: 10.3390/ijms252011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A new subclass of nutraceuticals, called immunoceuticals, is dedicated to immunological regulation. Although yeast-derived β-1,3/1,6-D-glucan shows promise as an immunoceutical candidate, further studies are needed to define its precise immune-enhancing processes and to standardize its use. Following methotrexate (MTX)-induced immunosuppression in rats, we evaluated the immunomodulatory efficacy of a highly pure and standardized β-1,3/1,6-D-glucan sample (YBG) in RAW 264.7 macrophages. In in vitro and in vivo models, YBG demonstrated remarkable immunomodulatory effects, such as repair of immune organ damage, elevation of blood cytokine levels, and enhanced phagocytosis and nitric oxide production in RAW 264.7 cells. These results are consistent with the established immunostimulatory properties of β-glucan. It is noteworthy that this research indicates the potential of YBG as an immunomodulatory nutraceutical, as it is among the first to demonstrate immunological augmentation in an immunosuppression setting produced by MTX. Based on these observations, further investigation of YBG is warranted, particularly given its potential to emerge as a combination immunoceutical to mitigate immunosuppression and reduce the risk of infection in rheumatoid arthritis (RA) patients receiving long-term MTX therapy.
Collapse
Affiliation(s)
- Joohee Son
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Eun-Mi Hong
- Department of Nutraceutical Ingredients Research, FINE BS Co., Ltd., 76 Yeonmujang-gil, Seongdong-gu, Seoul 04784, Republic of Korea
| | - Marion Schulenberg
- Department of Product Management Nutraceuticals & Biotechnology, Leiber GmbH, Franz-Leiber-Straße 1, 49565 Bramsche, Germany
| | - Hyungyung Chai
- Research Institute, Medicro Co., Ltd., Anyang 14067, Republic of Korea
| | - Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Arast Y, Esfandiari H, Kamranfar F, Mousavi Z, Ameri Shah Reza M, Pourahmad J. Evaluating the concentration dependent dual effects of β-Glucan on cancerous skin cells and mitochondria isolated from melanoma-induced animal model. Cutan Ocul Toxicol 2024:1-9. [PMID: 39392009 DOI: 10.1080/15569527.2024.2410355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Melanoma is still one of the deadliest cancers whose prevalence has increased in recent decades. Today, many polysaccharides and their bioactive compounds have been of special importance in modern biotechnology. They have various biological and therapeutic properties. they can regulate and strengthen the immune system, lower blood pressure and cholesterol, and reduce bacterial and viral infections. According to studies, these compounds also have antitumor properties. we investigated the cytotoxic effects of β-Glucan obtained from solid-state fermentation (SSF) of edible medicinal mushroom Lentinus edodes on cancerous skin cells. MATERIALS AND METHODS The mitochondria were isolated from melanoma cells via differential centrifugation and treated with various concentrations (30, 45, 60, 90, 120, and 240 µg/ml) of β-Glucan extract. Then, they were subjected to MTT, ROS, MMP decline, mitochondrial swelling, cytochrome c release, and flow cytometry assays. RESULTS The results of the MTT assay showed that IC50 of β-Glucan extract was 60 μg/ml, and it induced a selectively significant (P < 0.05) concentration-dependent decrease in the SDH activity in cancerous skin mitochondria. At higher concentrations, no such effect was observed. The ROS results also showed that 30, 45, and 60 µg/ml concentrations of β-Glucan extract significantly increased ROS. However, no such effect was observed at higher concentrations. MMP decline and the release of cytochrome c in cancer groups mitochondria and swelling were significantly increased at 30, 45, and 60 µg/ml compared to the control group. At higher concentrations, no such effect was observed. β-Glucan extract at 60 µg/ml concentration increased apoptosis on melanoma cells, while it had no effect on control non-tumour cells. DISCUSSION AND CONCLUSION Based on these results, β-Glucan extract at 30, 45, and 60 µg/ml showed a cytotoxic effect, while no such effect was observed at higher concentrations. Overall, it seems that β-Glucan has antioxidant and free radical scavenging effects on cancer cells at higher concentrations.
Collapse
Affiliation(s)
- Yalda Arast
- Research center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Hanife Esfandiari
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Farzane Kamranfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang F, Xu J, Hu C, Lai J, Shen P, Lu Y, Jiang F. β-glucan improves intestinal health of pearl gentian grouper via activation of the p38 mitogen-activated protein kinase signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109868. [PMID: 39216713 DOI: 10.1016/j.fsi.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Our previous study has demonstrated that supplementation of yeast β-glucan improves intestinal health in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we investigated the effects of perturbing p38 MAPK activity using an inhibitor on the intestinal health of β-glucan-injected pearl gentian grouper to elucidate the potential molecular mechanism underlying the protective effects of β-glucan on the fish gut. The pearl gentian grouper was categorized into four groups: PBS injected (CD group), β-glucan injected at a dose of 80 mg/kg (βG group), p38 MAPK inhibitor SB203580 injected at a dose of 1 mg/kg (SB203580 group), and a combination of β-glucan (80 mg/kg) and SB203580 (1 mg/kg) injected together (βG + SB203580 group). The results revealed that the introduction of SB203580 significantly suppressed the β-glucan-induced increase in p38α and p38β mRNA expression, as well as the phosphorylation of p38 MAPK. Both the βG group and SB203580 group exhibited reduced plica height and muscularis thickness. The βG + SB203580 group displayed a significant reduction in mucin cell level; interleukin 1β (il1β) mRNA expression; induced nitric oxide synthase, tumor necrosis factor α, and IL1β concentration; catalase and total antioxidant capacity activities. Additionally, there was a significant increase in the levels of intestinal malondialdehyde in the βG + SB203580 group compared to the βG group. The inhibition of the p38 MAPK signaling halted the trend of apoptosis-related caspase molecular expression induced by β-glucan. In conclusion, β-glucan injection resulted in elevated levels of mucous cells, nonspecific immunity, antioxidant capacity, and anti-apoptosis in grouper by modulating the p38 MAPK pathway. This study offers insights into the potential molecular mechanism underlying the protective effects of β-glucan on intestinal health in pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China; College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Chaoqun Hu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
5
|
Kong L, Yuan C, Guo T, Sun L, Liu J, Lu Z. Inhibitor of Myom3 inhibits proliferation and promotes differentiation of sheep myoblasts. Genomics 2024; 116:110921. [PMID: 39173892 DOI: 10.1016/j.ygeno.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.
Collapse
Affiliation(s)
- Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
6
|
Xu Y, Huang C, Xu T, Xiang X, Amakye WK, Zhao Z, Yao M, Zhu Y, Ren J. A Water Polysaccharide-Protein Complex from Grifola frondosa Inhibit the Growth of Subcutaneous but Not Peritoneal Colon Tumor under Fasting Condition. Mol Nutr Food Res 2024; 68:e2400023. [PMID: 38924315 DOI: 10.1002/mnfr.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Indexed: 06/28/2024]
Abstract
SCOPE Grifola frondosa has been shown to induce immune modulatory, modulate autophagy, and apoptosis in cancer cells. However, little is known about its potential for managing tumor progression as an adjunct to nutrient restriction. METHODS AND RESULTS Water extract produces a G. frondosa polysaccharide-protein complex (G. frondosa PPC) of average molecular weight of 46.48 kDa, with glucose (54.8%) as the main constituent. Under serum-restricted conditions, G. frondosa PPC can significantly inhibit MC38 colorectal tumor cell migration in vitro. Under alternate-day fasting condition, G. frondosa PPC can only significantly inhibit the growth of subcutaneous (s.c.) tumor, but is feeble in halting its spread in the intraperitoneal (i.p.) cavity in tumor-bearing mice. Histopathological examination and Raman imaging show a significant increase in lipid content in the tumor microenvironment (TME) tissue of the s.c. tumor-bearing mice. G. frondosa PPC significantly increases C17:0 and C24:0 saturated fatty acids and significantly decreases C16:1 and C18:1 monounsaturated fatty acids in the TME of s.c. tumor-bearing mice compared with the i.p. cavity model. CONCLUSION G. frondosa PPC significantly inhibits tumor growth in s.c. tumor-bearing mice under intermittent fasting conditions by altering the fatty acid composition of the TME.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiong Xiang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zikuan Zhao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong, 510665, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
7
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Lee SM, Lee JW, Cho J, Choi S, Kim I, Pack CG, Ha CH. Yeast-derived particulate beta-glucan induced angiogenesis via regulating PI3K/Src and ERK1/2 signaling pathway. Int J Biol Macromol 2024; 269:131884. [PMID: 38685541 DOI: 10.1016/j.ijbiomac.2024.131884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The importance of β-glucan from S. cerevisiae in angiogenesis has not been well studied. We investigated whether β-glucan induces angiogenesis through PI3K/Src and ERK1/2 signaling pathway in HUVECs. We identified that β-glucan induced phosphorylation of PI3K, Src, Akt, eNOS, and ERK1/2. Subsequently, we found that this phosphorylation increased the viability of HUVECs. We also observed that stimulation of β-glucan promoted the activity of MEF2 and MEF2-dependent pro-angiogenic genes, including EGR2, EGR3, KLF2, and KLF4. Additionally, the role of β-glucan in angiogenesis was confirmed using in vitro and ex vivo experiments including cell migration, capillary-like tube formation and mouse aorta ring assays. To determine the effect of β-glucan on the PI3K/Akt/eNOS and ERK1/2 signaling pathway, PI3K inhibitor wortmannin and ERK1/2 inhibitor SCH772984 were used. Through the Matrigel plug assay, we confirmed that β-glucan significantly increased angiogenesis in vivo. Taken together, our study demonstrates that β-glucan promotes angiogenesis via through PI3K and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeongin Cho
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sujin Choi
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Pharmacology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Bu Y, Liu Q, Shang Y, Zhao Z, Sun H, Chen F, Ma Q, Song J, Cui L, Sun E, Luo Y, Shu L, Jing H, Tan X. Ganoderma lucidum spores-derived particulate β-glucan treatment improves antitumor response by regulating myeloid-derived suppressor cells in triple-negative breast cancer. Int J Biol Macromol 2024; 270:131949. [PMID: 38749890 DOI: 10.1016/j.ijbiomac.2024.131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Granular β-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.
Collapse
Affiliation(s)
- Yang Bu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Qian Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yongjie Shang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Zhenzhen Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Haonan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Feifei Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Qian Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yi Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Haibo Jing
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Department of General Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
11
|
Li Y, Zheng H, Yao Q, Ma Y, Wang L, Liu Q, Liu Y. Preparation, structural characteristics and pharmacological activity of polysaccharides from Polygala tenuifolia: A review. Carbohydr Res 2024; 539:109117. [PMID: 38626569 DOI: 10.1016/j.carres.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Polygala tenuifolia is a traditional Chinese medicine with a long history of application, with the efficacy of suppressing cough, calming asthma, tranquilizing the mind, and benefiting the intellect. It is classified as a top-quality medicine in Shennong's Classic of Materia Medica. Polysaccharide is an important active ingredient in Polygala tenuifolia, which consists of several monosaccharides, including Ara, Gal, Glc, and so on. In this review, the preparation methods, structural characteristics, and biological activities of polysaccharides from Polygala tenuifolia are summarized, and the problems in the current studies are discussed to support further research, development, and utilization.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huimin Zheng
- College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Qiuhui Yao
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongbo Ma
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
12
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
13
|
Rajabi A, Nejati M, Homayoonfal M, Arj A, Razavi ZS, Ostadian A, Mohammadzadeh B, Vosough M, Karimi M, Rahimian N, Hamblin MR, Anoushirvani AA, Mirzaei H. Doxorubicin-loaded zymosan nanoparticles: Synergistic cytotoxicity and modulation of apoptosis and Wnt/β-catenin signaling pathway in C26 colorectal cancer cells. Int J Biol Macromol 2024; 260:128949. [PMID: 38143055 DOI: 10.1016/j.ijbiomac.2023.128949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Zymosan is a β-glucan isolated from Saccharomyces cerevisiae that could be employed for drug delivery. We synthesized zymosan nanoparticles and measured their structural and morphological properties using XRD, UV-Vis spectroscopy, TEM and AFM. The loading of doxorubicin (DOX) onto the nanoparticles was confirmed by FT-IR, and the DOX release was shown to be pH-dependent. The effect of these agents on C26 cell viability was evaluated by MTT tests and the expression of genes connected with the Wnt/β-catenin pathway and apoptosis were analyzed by RT-qPCR and Western blotting. Treatments were able to suppress the proliferation of C26 cells, and the zymosan nanocarriers loaded with DOX enhanced the anti-proliferative effect of DOX in a synergistic manner. Zymosan nanoparticles were able to suppress the expression of cyclin D1, VEGF, ZEB1, and Twist mRNAs. Treatment groups upregulated the expression of caspase-8, while reducing the Bax/Bcl-2 ratio, thus promoting apoptosis. In conclusion, zymosan nanoparticles as DOX nanocarriers could provide a more targeted drug delivery through pH-responsiveness, and showed synergistic cytotoxicity by modifying Wnt/β-catenin signaling and apoptosis.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abbas Arj
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Internal Medicine, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Arash Anoushirvani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Zheng W, Yang W, Wei W, Liu Z, Tremblay PL, Zhang T. An Electroconductive and Antibacterial Adhesive Nanocomposite Hydrogel for High-Performance Skin Wound Healing. Adv Healthc Mater 2024; 13:e2303138. [PMID: 37903562 DOI: 10.1002/adhm.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Indexed: 11/01/2023]
Abstract
Multifunctional hydrogel adhesives inhibiting infections and enabling the electrical stimulation (ES) of tissue reparation are highly desirable for the healing of surgical wounds and other skin injuries. Herein, a therapeutic nanocomposite hydrogel is designed by integrating β-cyclodextrin-embedded Ag nanoparticles (CDAgNPs) in a polyvinyl alcohol (PVA) matrix enhanced with free β-cyclodextrin (CD) and an atypical macromolecule made of β-glucan grafted with hyaluronic acid (HAG). The main objective is to develop a biocompatible dressing combining the electroconductivity and antibacterial activity of CDAgNPs with the cohesiveness and porosity of PVA and the anti-inflammatory, moisturizing, and cell proliferation-promoting properties of HAG. The last component, CD, is added to strengthen the network structure of the hydrogel. PVA/CD/HAG/CDAgNP exhibited excellent adhesion strength, biocompatibility, electroconductivity, and antimicrobial activity against a wide range of bacteria. In addition, the nanocomposite hydrogel has a swelling ratio and water retention capacity suitable to serve as a wound dressing. PVA/CD/HAG/CDAgNP promoted the proliferation of fibroblast in vitro, accelerated the healing of skin wounds in an animal model, and is hemostatic. Upon ES, the PVA/CD/HAG/CDAgNP nanocomposite hydrogel became more efficient both in vitro and in vivo further speeding up the skin healing process thus demonstrating its potential as a next-generation electroconductive wound dressing.
Collapse
Affiliation(s)
- Wen Zheng
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenyue Yang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenlong Wei
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ziru Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| |
Collapse
|
15
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
16
|
Dong QQ, Wu Q, Lu Y, Shi Y, Yang KD, Xu XL, Chen W. Exploring β-glucan as a micro-nano system for oral delivery targeted the colon. Int J Biol Macromol 2023; 253:127360. [PMID: 37827417 DOI: 10.1016/j.ijbiomac.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The critical role of oral colon-specific delivery systems (OCDDS) is important for delivering active agents to the colon and rectum specifically via the oral route. The use of micro/nanostructured OCDDS further improves drug stability, bioavailability, and retention time, leading to enhanced therapeutic effects. However, designing micro/nanoscale OCDDSs is challenging due to pH changes, enzymatic degradation, and systemic absorption and metabolism. Biodegradable natural polysaccharides are a promising solution to these problems, and β-glucan is one of the most promising natural polysaccharides due to its unique structural features, conformational flexibility, and specific processing properties. This review covers the diverse chemical structures of β-glucan, its benefits (biocompatibility, easy modification, and colon-specific degradation), and various β-glucan-based micro/nanosized OCDDSs, as well as their drawbacks. The potential of β-glucan offers exciting new opportunities for colon-specific drug delivery.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Qian Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
17
|
Shi X, Ding H, Tao J, Zhu Y, Zhang X, He G, Yang J, Wu X, Liu X, Yu X. Comprehensive evaluation of cell death-related genes as novel diagnostic biomarkers for breast cancer. Heliyon 2023; 9:e21341. [PMID: 38027811 PMCID: PMC10643282 DOI: 10.1016/j.heliyon.2023.e21341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Breast cancer (BRCA) ranks first among cancers in terms of incidence and mortality rates in women, primarily owing to metastasis, chemo-resistance, and heterogeneity. To predict long-term prognosis and design novel therapies for BRCA, more sensitive markers need to be explored. Methods Data from 1089 BRCA patients were downloaded from TCGA database. Pearson's correlation analysis and univariate and multivariate Cox regression analyses were performed to assess the role of cell death-related genes (CDGs) in predicting BRCA prognosis. Kaplan-Meier survival curves were generated to compare the overall survival in the two subgroups. A nomogram was constructed using risk scores based on the five CDGs and other clinicopathological features. CCK-8, EdU incorporation, and colony formation assays were performed to verify the inhibitory effect of NFKBIA on BRCA cell proliferation. Transwell assay, flow cytometry, and immunohistochemistry analyses were performed to ascertain the biological function of NFKBIA. Results Five differentially expressed CDGs were detected among 156 CDGs. The risk score for each patient was then calculated based on the expression levels of the five CDGs. Distinct differences in immune infiltration, expression of immune-oncological targets, mutation status, and half-maximal inhibitory concentration values of some targeted drugs were observed between the high- and low-risk groups. Finally, in vitro cell experiments verified that NFKBIA overexpression suppresses the proliferation and migration of BRCA cells. Conclusions Our study revealed that some CDGs, especially NFKBIA, could serve as sensitive markers for predicting the prognosis of patients with BRCA and designing more personalized clinical therapies.
Collapse
Affiliation(s)
- Xiaoyue Shi
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hao Ding
- Department of Breast Surgery, Baoying Maternal and Child Health Hospital, 120 Anyi East Road, Yangzhou, Jiangsu 225800, People's Republic of China
| | - Jing Tao
- Department of Thyroid-Breast Surgery, Nanjing Pukou Hospital, The Fourth Affiliated Hospital of Nanjing Medical University, 18 Puyuan Road, Nanjing, Jiangsu 210031, People's Republic of China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Gao He
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
18
|
Zhuang X, Liu T, Wei L, Gao J. Overexpression of FTO inhibits excessive proliferation and promotes the apoptosis of human glomerular mesangial cells by alleviating FOXO6 m6A modification via YTHDF3-dependent mechanisms. Front Pharmacol 2023; 14:1260300. [PMID: 37822879 PMCID: PMC10562590 DOI: 10.3389/fphar.2023.1260300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Background: N6-methyladenosine (m6A) is a prevalent post-transcriptional modification presented in messenger RNA (mRNA) of eukaryotic organisms. Chronic glomerulonephritis (CGN) is characterised by excessive proliferation and insufficient apoptosis of human glomerular mesangial cells (HGMCs) but its underlying pathogenesis remains undefined. Moreover, the role of m6A in CGN is poorly understood. Methods: The total level of m6A modification was detected using the m6A quantification assay (Colorimetric). Cell proliferation was assessed by EdU cell proliferation assay, and cell apoptosis was detected by flow cytometry. RNA sequencing was performed to screen the downstream target of fat mass and obesity-associated protein (FTO). MeRIP-qPCR was conducted to detect the m6A level of forkhead box o6 (FOXO6) in HGMCs. RIP assay was utilized to indicate the targeting relationship between YTH domain family 3 (YTHDF3) and FOXO6. Actinomycin D assay was used to investigate the stability of FOXO6 in HGMCs. Results: The study found that the expression of FTO was significantly reduced in lipopolysaccharide (LPS)-induced HGMCs and renal biopsy samples of patients with CGN. Moreover, FTO overexpression and knockdown could regulate the proliferation and apoptosis of HGMCs. Furthermore, RNA sequencing and cellular experiments revealed FOXO6 as a downstream target of FTO in regulating the proliferation and apoptosis of HGMCs. Mechanistically, FTO overexpression decreases the level of FOXO6 m6A modification and reduces the stability of FOXO6 mRNA in a YTHDF3-dependent manner. Additionally, the decreased expression of FOXO6 inhibits the PI3K/AKT signaling pathway, thereby inhibiting the proliferation and promoting apoptosis of HGMCs. Conclusion: This study offers insights into the mechanism through which FTO regulates the proliferation and apoptosis of HGMCs by mediating m6A modification of FOXO6 mRNA. These findings also suggest FTO as a potential diagnostic marker and therapeutic target for CGN.
Collapse
Affiliation(s)
- Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Liangbing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Al-Awaida W, Al-Ameer HJ, Sharab A, Akasheh RT. Modulation of wheatgrass ( Triticum aestivum Linn) toxicity against breast cancer cell lines by simulated microgravity. Curr Res Toxicol 2023; 5:100127. [PMID: 37767028 PMCID: PMC10520342 DOI: 10.1016/j.crtox.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study scrutinizes the effects of simulated microgravity on the antioxidant and cytotoxic potential, along with the phytochemical content of wheatgrass (Triticum aestivum Linn). To imitate microgravity, wheatgrass seeds were germinated in a 3D-clinostat at different rotations per minute (5, 10, 15, and 20 rpm), together with terrestrial gravity control, over 10 days. After germination, the methanolic extracts were analyzed using UPLC-Triple Quad LCMS for their phytochemical composition and tested for their hydrogen peroxide, nitric oxide, and DPPH scavenging activities. The cytotoxic effects of these extracts were evaluated against normal skin fibroblasts, normal breast cells (MCF-10), and breast cancer cells (MCF-7 and MDA-231). The findings showed an extended root growth in wheatgrass germinated under microgravity (WGM) compared to under gravity (WGG). Additionally, WGM extracts demonstrated increased H2O2-, NO-, and DPPH-scavenging activities and a higher content of polyphenols and flavonoids than WGG extracts. These effects were amplified with an increase in clinostat rotations. Moreover, WGM extracts were found to contain a unique set of bioactive compounds (compounds that were detected in the microgravity-germinated wheatgrass but were either absent or present in lower concentrations in wheatgrass germinated under standard gravity conditions.), including pyridoxine, apigenin, and tocopherol, among others, which were absent in WGG. The UPLC-Triple Quad LCMS analysis revealed these unique bioactive compounds in WGM. Notably, WGM extracts showed enhanced cytotoxic effects against normal skin fibroblasts, normal MCF-10, MCF-7, and breast cancer MDA-231 cell lines, with increased cytotoxicity correlating with the number of clinostat rotations. Particularly, WGM extract (at 20 rpm) demonstrated significantly stronger cytotoxicity against MCF-7 breast cancer cells. Further in-depth gene expression analysis of MCF-7 cells exposed to WGM revealed a significant downregulation of genes integral to breast cancer pathways, tyrosine kinase signaling, and DNA repair, complemented by upregulation of certain cell survival and cytotoxic genes. These alterations in genetic pathways associated with cell survival, hormone responses, and cancer progression may elucidate the enhanced cytotoxicity observed in WGM extracts. Our findings underscore the potential of microgravity as a tool to enhance the cytotoxic capabilities of wheatgrass against cancer cell lines, presenting a promising direction for future research in the field of space biology and its implications for terrestrial health.
Collapse
Affiliation(s)
- Wajdy Al-Awaida
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-AhliyyaAmman University (AAU), Amman, 19328, Jordan
| | - Ahmad Sharab
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Rand T. Akasheh
- Department of Nutrition and Dietetics, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| |
Collapse
|
20
|
Wu Z, Yang Y, Li J, Bossier P, Wei X, Guo Z, Han B, Ye J. β-Glucans in particulate and solubilized forms elicit varied immunomodulatory and apoptosis effects in teleost macrophages in a dosedependent manner. Front Immunol 2023; 14:1243358. [PMID: 37675105 PMCID: PMC10477985 DOI: 10.3389/fimmu.2023.1243358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
β-Glucans are a group of heterogeneous glucose polymers that possess immunomodulatory activities. The complex nature of their structures, uncertainty regarding the doses, and variable immune effects pose a challenge to comprehensive understanding. In this study, we investigated the immune responses and apoptosis effects in Nile tilapia (Oreochromis niloticus) head kidney macrophages (MФ) upon exposure to two β-Glucans (Paramylon and Laminarin) at low and high doses. Our results demonstrate that Paramylon elicits more robust immune responses than Laminarin, albeit with a dose-limiting effect. We also observed that the high-dose Paramylon induces apoptosis, whereas no such effect was detected in Laminarin treatment. Mechanistically, high-dose Paramylon activates the intrinsic apoptosis pathway, with significantly up-regulation of intrinsic apoptosis-related genes and impaired mitochondrial function. On the other hand, Laminarin triggers metabolic reprogramming in MФ, resulting in the enrichment of the metabolite α-Ketoglutarate, which protects the MФ from apoptosis. Overall, our findings highlight the importance of identifying the optimal dose range for β-Glucans, based on sources or structures, to achieve maximal immunomodulatory effects. These results have important implications for the design and optimization of β-Glucans-based drugs or adjuvants in immunotherapies.
Collapse
Affiliation(s)
- Zhelin Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Xiayi Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Biao Han
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
22
|
Qin Z, Yu S, Zhang K, Wei X, Li J, Zhang Z, Wan S, Gao H. Characterization of a Glycoside Hydrolase Family 157 Endo-β-1,3-Glucanase That Displays Antifungal Activity against Phytopathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37376774 DOI: 10.1021/acs.jafc.3c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
β-1,3-Glucan-degrading enzymes are widely used in fields such as food processing, plant protection, and breweries. In this work, we identified a glycoside hydrolase (GH) family 157 endo-β-1,3-glucanase (BsGlc157A) from Bacteroides sp. M27 and characterized its biochemical properties, structural model, and antifungal activity. Enzymological characterization indicated that BsGlc157A performs its optimal catalytic activity at pH 6.0 and 40 °C. BsGlc157A adopted the classic (β/α)8 TIM-barrel structure. Two catalytic residues, the nucleophile (Glu215) and the proton donor (Glu123), were confirmed via structural modeling and site-directed mutagenesis. Moreover, BsGlc157A hydrolyzed curdlan into a series of oligosaccharides with polymerization degrees 2-5 and exhibited inhibitory effects on the hyphal growth of typical fruit pathogenic fungi (Monilinia fructicola, Alternaria alternata, and Colletotrichum gloeosporioides), thereby illustrating effective biocontrol activity. These results revealed the catalytic properties and the application potential of GH family 157 β-1,3-glucanase, thus providing valuable biochemistry information about the group of carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Zhen Qin
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sainan Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Kemin Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiasen Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Junjie Li
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zheyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sibao Wan
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyan Gao
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Wu QC, Zhang YY, Li YB, Alitongbieke G, Xue Y, Li XM, Lin ZC, Huang JF, Pan T, Pan XM, You JP, Lin JM, Pan YT. A novel cell-wall polysaccharide derived from the stipe of Agaricus bisporus inhibits mouse melanoma proliferation and metastasis. Arch Biochem Biophys 2023:109678. [PMID: 37356609 DOI: 10.1016/j.abb.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Malignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a β-(1 → 4)- glucosyl backbone with β-(1 → 2) and (1 → 6)-d-glucosyl side-chains. The anti-melanoma effects of Abwp and its associated mechanisms in mice were then explored using in vitro and in vivo approaches. In vitro results showed that Abwp inhibited B16 melanoma cell proliferation and promoted their apoptosis in both time- and dose-dependent manners. In B16 cells induced with tumor necrosis factor (TNF-α), Abwp significantly decreased the protein expression of inflammatory-related signaling pathway (e.g., p38 MAPK and NF-κB) in time-, concentration-, and dose-dependent manners. Moreover, Abwp blocked nuclear entry of NF-κB-p65. In an in vivo mouse model featuring neoplasm transplantation with B16 melanoma cells, Abwp significantly inhibited the growth and proliferation of mouse melanoma. Hematoxylin staining showed that the invasion of melanoma cells into the lung tissue of the Abwp-treated group was significantly reduced. Immunohistochemical analysis showed that the expression of proliferation cell nuclear antigen (PCNA), N-cadherin, MMP-9, and Snail in the lung of mouse was significantly inhibited. Immunofluorescence showed that Abwp significantly interfered with the nuclear transcription of NF-κB-p65 in a dose-dependent manner. Collectively, these results showed that Abwp mediated p38 MAPK and NF-κB signaling pathways to inhibit the inflammatory response and malignant proliferation and metastasis of melanoma in mice.
Collapse
Affiliation(s)
- Qi-Ci Wu
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yin-Ying Zhang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Yun-Bing Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Xiu-Min Li
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Zhi-Chao Lin
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Fujian Engineering Technology Research Center of Fungal Active Substances, 363000, Zhangzhou, China
| | - Jia-Fu Huang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Tao Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China; Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China; Fujian Polysaccharide Biotechnology Co., Ltd., 363000, Zhangzhou, China
| | - Xiao-Ming Pan
- Mendel (Xiamen) Biotechnology Co., Ltd., 361000, Xiamen, China
| | - Jing-Ping You
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China
| | - Jin-Mei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, China.
| | - Yu-Tian Pan
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, 363000, Zhangzhou, China.
| |
Collapse
|
24
|
Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023; 15:1615. [PMID: 37376063 DOI: 10.3390/pharmaceutics15061615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that β-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with β-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of β-glucan.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Fu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Sixian Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Saitama, Japan
| | - Alexander G Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
25
|
Sushytskyi L, Synytsya A, Čopíková J, Lukáč P, Rajsiglová L, Tenti P, Vannucci LE. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview. Foods 2023; 12:foods12061121. [PMID: 36981048 PMCID: PMC10048208 DOI: 10.3390/foods12061121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukáč
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Lenka Rajsiglová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Paolo Tenti
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Luca E Vannucci
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
26
|
Kozarski M, Klaus A, van Griensven L, Jakovljevic D, Todorovic N, Wan-Mohtar WAAQI, Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
28
|
Karuppusamy S, Rajauria G, Fitzpatrick S, Lyons H, McMahon H, Curtin J, Tiwari BK, O’Donnell C. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of Preclinical and Clinical Studies. Mar Drugs 2022; 20:772. [PMID: 36547919 PMCID: PMC9780867 DOI: 10.3390/md20120772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or β-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Gaurav Rajauria
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | | | - Henry Lyons
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland
| | - Brijesh K. Tiwari
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown, D15 KN3K Dublin, Ireland
| | - Colm O’Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
29
|
Prompting immunostimulatory activity of curdlan with grafting methoxypolyethylene glycol. Int J Biol Macromol 2022; 222:1092-1100. [DOI: 10.1016/j.ijbiomac.2022.09.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
|
30
|
Canaan MM, Reis-Canaan JC, Zangerônimo MG, Andrade EF, Gonçalves TMSV, Pereira MCA, Lima RR, Pardi V, Murata RM, Pereira LJ. Yeast Beta-Glucans Ingestion Does Not Influence Body Weight: A Systematic Review and Meta-Analysis of Pre-Clinical Studies. Nutrients 2021; 13:nu13124250. [PMID: 34959802 PMCID: PMC8707765 DOI: 10.3390/nu13124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/09/2022] Open
Abstract
Dietary fiber supplementation has been studied as a promising strategy in the treatment of obesity and its comorbidities. A systematic review and meta-analysis were performed to verify whether the consumption of yeast beta-glucan (BG) favors weight loss in obese and non-obese rodents. The PICO strategy was employed, investigating rodents (Population), subjected to the oral administration of yeast BG (Intervention) compared to animals receiving placebo (Comparison), evaluating body weight changes (Outcome), and based on preclinical studies (Study design). Two reviewers searched six databases and the grey literature. We followed the PRISMA 2020 guidelines, and the protocol was registered on PROSPERO (CRD42021267788). The search returned 2467 articles. Thirty articles were selected for full-text evaluation, and seven studies remained based on the eligibility criteria. The effects of BG intake on body weight were analyzed based on obese (n = 4 studies) and non-obese animals (n = 4 studies). Even though most studies on obese rodents (75%) indicated a reduction in body weight (qualitative analysis), the meta-analysis showed this was not significant (mean difference −1.35 g—95% CI −5.14:2.45). No effects were also observed for non-obese animals. We concluded that the ingestion of yeast BG barely affects the body weight of obese and non-obese animals.
Collapse
Affiliation(s)
- Marcelo M. Canaan
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
| | - Juliana C. Reis-Canaan
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
| | - Márcio G. Zangerônimo
- Veterinary Science Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Eric F. Andrade
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
- Agrarian Sciences Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí BR-38610-000, Brazil
| | - Thais M. S. V. Gonçalves
- Dentistry Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis BR-88040-900, Brazil;
| | - Michel C. A. Pereira
- Department of Nutrition, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Renato R. Lima
- Department of Statistics, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil;
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC 27834, USA;
| | - Ramiro M. Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC 27834, USA;
- Correspondence: (R.M.M.); (L.J.P.); Tel.: +1-252-737-6960 (R.M.M.); +55-35-3829-5211 (L.J.P.)
| | - Luciano J. Pereira
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras BR-37200-000, Brazil; (M.M.C.); (J.C.R.-C.); (E.F.A.)
- Correspondence: (R.M.M.); (L.J.P.); Tel.: +1-252-737-6960 (R.M.M.); +55-35-3829-5211 (L.J.P.)
| |
Collapse
|