1
|
Aldoghaim M, Alkorbi J, Al-Qahtani SD, Al-Senani GM. Fabrication of Anthocyanidin-Encapsulated Polyvinyl Alcohol Nanofibrous Membrane for Smart Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1701. [PMID: 39513781 PMCID: PMC11547423 DOI: 10.3390/nano14211701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Smart colorimetric packaging has been an important method to protect human health from external hazardous agents. However, the currently available colorimetric detectors use synthetic dye probes, which are costly, toxic, difficult to prepare, and non-biodegradable. Herein, an environmentally friendly cellulose nanocrystal (CNC)-supported polyvinyl alcohol (PVA) nanofibrous membrane was developed for the colorimetric monitoring of food spoilage. Anthocyanidin (ACY) is a naturally occurring spectroscopic probe that was isolated from pomegranate (Punica granatum L.). By encapsulating the anthocyanin probe in electrospun polyvinyl alcohol fibers in the presence of a mordant (M), M/ACY nanoparticles were generated. After exposure to rotten shrimp, an investigation on the colorimetric changes from purple to green for the smart nanofibrous fabric was conducted using the coloration parameters and absorbance spectra. In response to increasing the length of exposure to rotten shrimp, the absorption spectra of the anthocyanin-encapsulated nanofibrous membrane showed a wavelength blueshift from 580 nm to 412 nm. CNC displayed a diameter of 12-17 nm. The nanoparticle diameter of M/ACY was monitored in the range of 8-13 nm, and the nanofiber diameter was shown in the range of 70-135 nm. Slight changes in comfort properties were monitored after encapsulating M/ACY in the nanofibrous fabric.
Collapse
Affiliation(s)
- Maryam Aldoghaim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jabrah Alkorbi
- Department of Chemistry, College of Science, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Salhah D. Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ghadah M. Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
2
|
Al-Qahtani SD, Al-Senani GM. Green and sustainable smart wooden system integrated with cellulose nanowhiskers-supported polyvinyl alcohol and anthocyanin biomolecules to monitor food freshness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124497. [PMID: 38795527 DOI: 10.1016/j.saa.2024.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Smart packaging materials have been used to protect human health from environmental hazards by sending real-time colorimetric signals for changes in the food packaging environment. However, the colorimetric material sensors use synthetic sensor dyes, which are toxic, expensive, non-biodegradable, and difficult to prepare. Herein, a simple strategy is presented for the development of an environmentally-friendly halochromic wood able to change color upon exposure to spoilage of food. A combination of anthocyanin (Ac)/aluminum (Al) mordant (Ac/Al) nanoparticles and cellulose nanowhiskers (CNW)-reinforced polyvinyl alcohol (PVA) was infiltrated into a delignified wood to produce a translucent wood with halochromic properties. CNW were employed as reinforcement agent to improve the mechanical performance of PVA. Additionally, CNW function as a dispersing agent to prevent agglomeration of Ac/Al nanoparticles. The diameters of CNW are in the range of 12-19 nm, whereas Ac/Al particles showed diameters of 9-22 nm. The smart wood changed color from purplish to colorless when exposed to food spoilage. A hypsochromic change from 539 nm to 370 nm was shown by the anthocyanin receptor when the spoilage level of food increased. This could be attributed to the pH-driven molecular switching of anthocyanin, leading to charge delocalization.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
3
|
Jia J, Li L, Wu Z, Li S. Fluorescent probes for imaging: a focus on atherosclerosis. NANOSCALE 2024; 16:11849-11862. [PMID: 38836376 DOI: 10.1039/d4nr01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Atherosclerosis, as a chronic cardiovascular disease driven by inflammation, can lead to arterial stenosis and thrombosis, which seriously threatens human life and health. Achieving the timely monitoring of atherosclerosis is an important measure to reduce acute cardiovascular diseases. Compared with other imaging platforms, fluorescence imaging technology has the characteristics of excellent sensitivity, high spatiotemporal resolution and real-time imaging, which is very suitable for direct visualization of molecular processes and abnormalities of atherosclerosis. Recently, researchers have strived to design a variety of fluorescent probes, from single-mode fluorescent probes to fluorescent-combined dual/multimode probes, to enrich the imaging and detection of atherosclerosis. Therefore, this review aims to provide an overview of currently investigated fluorescent probes in the context of atherosclerosis, summarize relevant published studies showing applications of different types of fluorescent probes in the early-stage and other stages to detect atherosclerosis, give effective biological targets and discuss the latest progress and some limitations. Finally, some insights are provided for the development of a new generation of more accurate and efficient fluorescent probes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
5
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
6
|
Liu B, Zhong H, Hu D. Construction of network-like cross-linked cellulose aerogel films with water-responsive properties for visualization of pH changes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Alshammari K, Alrefaei AF, Sayqal A, Almahri A, Ibarhiam SF, Mogharbel AT, El-Metwaly NM. Development of Thermochromic Ink Using the Anthocyanidin-Based Red-Cabbage Extract for Anticounterfeiting Applications. ACS OMEGA 2022; 7:48215-48223. [PMID: 36591117 PMCID: PMC9798495 DOI: 10.1021/acsomega.2c06314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Temperature-driven colorful switching inks have been an interesting security encoding method to improve the anticounterfeiting properties of commercially available merchandise. Recently, thermochromic inks have faced many disadvantages, such as low efficiency, high cost, and low durability. In the current study, we developed self-healable ink from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) integrated with the anthocyanidin(ACY)-based red-cabbage extract in the presence of ferrous sulfate for authentication purposes. Self-healable inks have been able to guarantee durability and thermal stability. Environmentally friendly, ACY-based chromophore was extracted from Brassica oleracea L. var. Capitata (red-cabbage) to serve as a spectroscopic probe immobilized into PAMPSA. The prepared self-healable nanocomposite ink (PAMPSA-ACY) displayed temperature-induced chromism with high reversibility and thermal stability. Different self-healable nanocomposite inks of thermochromic features were prepared employing different ratios of the ACY-based red-cabbage extract. As described by Commission Internationale de L'éclairage Lab coordinates, homogeneous films were stamped on the paper surface to show a purple color (631 nm) able to switch color into red (458 nm) with the increase in temperature from 25 to 65 °C, respectively. Transmission electron microscopy, infrared spectra (FT-IR), energy-dispersive X-ray, and scanning electron microscopy were utilized to inspect the morphological behavior and chemical compositions of thermochromic prints. Both mechanical and rheological properties of ink-printed paper substrates and ink solution were also investigated. Both of antimicrobial activity and cytotoxicity study of the nanocomposite ink (PAMPSA-ACY) were also evaluated. Various industries can take the advantage of the current ink as a competent approach for anticounterfeiting purposes.
Collapse
Affiliation(s)
- Khaled
F. Alshammari
- Department
of Criminal Justice and Forensics, King
Fahad Security College, Riyadh11461, Saudi Arabia
| | - Abdulmajeed F. Alrefaei
- Department
of Biology/Genetic and Molecular Biology Central Laboratory (GMCL), Jamoum University College, Umm Al-Qura University, Makkah2203, Saudi Arabia
| | - Ali Sayqal
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah24230, Saudi Arabia
| | - Albandary Almahri
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia
| | - Saham F. Ibarhiam
- Department
of Chemistry, College of Science, University
of Tabuk, 71491Tabuk, Saudi Arabia
| | - Amal T. Mogharbel
- Department
of Chemistry, College of Science, University
of Tabuk, 71491Tabuk, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah24230, Saudi Arabia
- ,
| |
Collapse
|
8
|
Development of smart cotton fabrics immobilized with anthocyanin and potassium alum for colorimetric detection of bacteria. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Alsahag M, Alisaac A, Al-Hazmi GA, Pashameah RA, Attar RM, Saad FA, El-Metwaly NM. Preparation of carboxymethyl cellulose/polyvinyl alcohol wound dressing composite immobilized with anthocyanin extract for colorimetric monitoring of wound healing and prevention of wound infection. Int J Biol Macromol 2022; 224:233-242. [DOI: 10.1016/j.ijbiomac.2022.10.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
10
|
Sharmoukh W, Abdelrahman MS, Shaban E, Khattab TA. Metallochromic Hydrazone‐Based Chemosensor with Application in a Colorimetric Paper Strip for Selective Detection of Cu
2+. ChemistrySelect 2022. [DOI: 10.1002/slct.202200811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Walid Sharmoukh
- Advanced Materials Technology and Mineral Resources Research Institute Inorganic Chemistry Department National Research Centre Cairo 12622 Egypt
| | - Meram S. Abdelrahman
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Elkhabiry Shaban
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Tawfik A. Khattab
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| |
Collapse
|
11
|
Alaysuy O, Snari RM, Alfi AA, Aldawsari AM, Abu-Melha S, Khalifa ME, El-Metwaly NM. Development of green and sustainable smart biochromic and therapeutic bandage using red cabbage (Brassica oleracea L. Var. capitata) extract encapsulated into alginate nanoparticles. Int J Biol Macromol 2022; 211:390-399. [PMID: 35580745 DOI: 10.1016/j.ijbiomac.2022.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 12/28/2022]
Abstract
Novel multifunctional wound dressing with the ability to protect, cure and sense the healing process, was developed. Red-cabbage extract has been reported to exhibit bioactive compounds with the ability to function as antioxidant, antiinflammatory, anticancer, antibacterial, antifungal, and antiviral agent, as well as a natural pH-sensory chromophoric material. An anthocyanin extract was prepared from Red-cabbage (Brassica oleracea L. Var. capitata). The anthocyanins extract was encapsulated into calcium alginate in the presence of potash alum mordant, which was then applied to the surface of the cotton gauze. Red-cabbage based anthocyanin chromophoric extract was encapsulated at different concentrations into alginate-based hydrogel and immobilized into cotton gauze to provide a smart therapeutic pH-responsive wound dress to function as an antimicrobial and biochromic matrix providing a comfortable dress sensor to monitor the wound status. Decreasing the pH of a wound mimic solution caused a blue shift from 579 to 437 nm. The anthocyanin spectroscopic probe's halochromic activity demonstrated a colorimetric change from purple to pink, which was critical to the dyed cotton diagnostic assay's biochromic performance. The colorimetric parameters of the prepared dressing sensor were proved by UV-Vis absorbance and CIE Lab coordinates. Both mechanical and morphological properties of the prepared dressing were studied using different analytical methods. The effect of anthocyanin concentration on the mechanical, water vapor permeability, water absorption and morphological properties of the wound dressing were investigated. No substantial flaws in air-permeability or bend length were detected after dyeing. The colored cotton gauze samples were tested for their high colorfastness. The cytotoxicity and antimicrobial activity of the prepared biochromic cotton gauze were explored. The dyed cotton samples exhibited no cytotoxicity and improved antimicrobial activity with increasing the anthocyanin ratio on cotton surface.
Collapse
Affiliation(s)
- Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Afrah M Aldawsari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; King abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohamed E Khalifa
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516, Egypt.
| |
Collapse
|
12
|
Khattab TA, El-Naggar ME, Pannipara M, Wageh S, Abou Taleb MF, Abu-Saied MA, El Sayed IET. Green metallochromic cellulose dipstick for Fe(III) using chitosan nanoparticles and cyanidin-based natural anthocyanins red-cabbage extract. Int J Biol Macromol 2022; 202:269-277. [PMID: 35033529 DOI: 10.1016/j.ijbiomac.2022.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Environmentally-friendly, cyanidin(Cy)-based anthocyanin isolated from red-cabbage served as a spectroscopic probe imprinted onto chitosan nanoparticles (CsNPs), which were in turn integrated onto cellulose paper strip (CPS) as a host matrix to develop a metallochromic solid state sensor for real-time selective determination of ferric ions in an aqueous medium. The ferric transition metal ions in aqueous environments were detected using a novel, simple, portable, fast responsive, low-cost, real-time, environmentally safe, reversible and colorimetric sensor based on chitosan nanoparticles as a hosting biopolymer and cyanidin phenol chromophore as a biomolecular probe. In order to use the cyanidin biomolecule as a pH indicator and chelating agent, it was purified from red-cabbage and added into the CsNPs biosensor film. The colorimetric shift increased in direct proportion to the ferric ion concentration. As a result, the current research that was both qualitative and quantitative was carried out. While the Cy-CsNPs-CPS sensor showed high selectivity for ferric ions, no color change was detected for other metal cations. It was discovered that the detection process occurred as a result of a coordination complex formed between the active sites of phenolic cyanidin and Fe(III) ions.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Institute of Textile Research and Technology, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, P.O. Box 7551, Cairo 11762, Egypt
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTACITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | | |
Collapse
|