1
|
Musa M, Sun X, Shi J, Li J, Zhang S, Shi X. Intelligent responsive nanogels: New Horizons in cancer therapy. Int J Pharm 2024; 669:125050. [PMID: 39645062 DOI: 10.1016/j.ijpharm.2024.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Biologically engineered nanogels formed through sophisticated intramolecular crosslinking processes represent the forefront of next-generation drug delivery systems. These innovative systems offer many advantages, like adjustable size, satisfactory biocompatibility, and minimal toxicity. Their unique attributes facilitate deep penetration and long-term retention of drugs in tumors, effectively enhancing the anti-tumor effects. Nonetheless, the rapid disintegration of nanogels and the subsequent triggering of drug release at the tumor site pose significant challenges in achieving more effective and precise tumor treatments. Therefore, increasing research has been dedicated to exploring stimulus-responsive nanogels for enhancing tumor therapy. This review aims to encapsulate the research advancements in emerging stimulus-responsive antitumor nanogels. Firstly, a detailed exposition is provided on various endogenous stimulus-responsive nanogels, encompassing factors such as pH, hypoxia, enzymes, reactive oxygen species (ROS), and glutathione (GSH). Secondly, various nanogels triggered by exogenous stimuli such as light, ultrasound, temperature, and magnetic fields are elaborately presented. Furthermore, nanogels with multifaceted stimulus-responsive properties are also skillfully designed. Finally, the future directions, application prospects, and challenges of intelligent responsive nanogels in cancer treatment are highlighted.
Collapse
Affiliation(s)
- MiriGuli Musa
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Li
- School of Pharmacy, Shenyang Medical College, Shenyang, Liaoning Province, China.
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
de Lima LRM, Silva MFS, Araújo GS, de Oliveira Silva Ribeiro F, Ribeiro IS, Pessoa C, Costa Filho RN, Marinho Filho JDB, Araújo AJ, da Silva DA, Andrade Feitosa JP, de Paula RCM. Doxorubicin-galactomannan nanoconjugates for potential cancer treatment. Carbohydr Polym 2024; 342:122356. [PMID: 39048219 DOI: 10.1016/j.carbpol.2024.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
In this study, we report the synthesis and characterization of pH-responsive nanoconjugates for targeted drug delivery. Galactomannan extracted from D. regia seeds was oxidized to form aldehyde groups, achieving a percentage of oxidation of 25.6 %. The resulting oxidized galactomannan (GMOX) was then copolymerized with PINIPAm-NH2, yielding a copolymer. The copolymer exhibited signals from both GMOX and PNIPAm-NH2 in its NMR spectrum, confirming successful copolymerization. Critical association concentration (CAC) studies revealed the formation of nanostructures, with lower CAC values observed at higher temperatures. The copolymer and GMOX reacted with doxorubicin (DOX), resulting in nanoconjugates with controlled drug release profiles, especially under acidic conditions similar to tumor microenvironments. Cytotoxicity assays demonstrated significant efficacy of the nanoconjugates against melanoma cells with reduced toxicity towards healthy cells. These findings underscore the potential of the pH-responsive nanoconjugates as promising candidates for targeted cancer therapy, offering improved therapeutic efficacy and reduced systemic side effects.
Collapse
Affiliation(s)
| | | | - Gisele S Araújo
- Research Center on Biodiversity and Biotechnology, Federal University of Delta of Parnaíba, Brazil
| | | | | | - Cláudia Pessoa
- Experimental Oncology Laboratory - Federal University of Ceará, Brazil
| | | | | | - Ana Jersia Araújo
- Research Center on Biodiversity and Biotechnology, Federal University of Delta of Parnaíba, Brazil
| | | | | | | |
Collapse
|
3
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Fillaudeau A, Cuenot S, Makshakova O, Traboni S, Sinquin C, Hennetier M, Bedini E, Perez S, Colliec-Jouault S, Zykwinska A. Glycosaminoglycan-mimetic infernan grafted with poly(N-isopropylacrylamide): Toward a thermosensitive polysaccharide. Carbohydr Polym 2024; 326:121638. [PMID: 38142103 DOI: 10.1016/j.carbpol.2023.121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Glycosaminoglycans (GAGs) are essential constituents of the cell surface and extracellular matrix, where they are involved in several cellular processes through their interactions with various proteins. For successful tissue regeneration, developing an appropriate matrix supporting biological activities of cells in a similar manner than GAGs remains still challenging. In this context, this study aims to design a thermosensitive polysaccharide that could further be used as hydrogel for tissue engineering applications. For this purpose, infernan, a marine bacterial exopolysaccharide (EPS) endowed with GAG-mimetic properties was grafted with a thermosensitive polymer, poly(N-isopropylacrylamide) (pNIPAM). Eight grafted polysaccharides were obtained by varying EPS/pNIPAM molar ratio and the molecular weight of pNIPAM. Their physicochemical characteristics and their thermosensitive properties were determined using a multi-technique, experimental approach. In parallel, molecular dynamics and Monte Carlo simulations were applied at two different scales to elucidate, respectively, the molecular conformation of grafted infernan chain and their ability to form an infinite network undergoing a sol-gel transition near the percolation, a necessary condition in hydrogel formation. It comes out from this study that thermosensitive infernan was successfully developed and its potential use in tissue regeneration as a hydrogel scaffold will further be assessed.
Collapse
Affiliation(s)
- Arnaud Fillaudeau
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russian Federation
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Marie Hennetier
- Plateforme Toulouse Field-Flow Fractionation Center, TFFFC, Ecole d'Ingénieurs de Purpan, Toulouse, France
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serge Perez
- Centre de Recherches sur les Macromolécules Végétales, Université de Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France.
| |
Collapse
|
5
|
Sung TC, Wang T, Liu Q, Ling QD, Subbiah SK, Renuka RR, Hsu ST, Umezawa A, Higuchi A. Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. J Mater Chem B 2023; 11:1389-1415. [PMID: 36727243 DOI: 10.1039/d2tb02601e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77 Kuangtai Road, Pingjen City, Tao-Yuan County 32405, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China. .,Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan. .,R & D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Bei Rd., Jhongli, Taoyuan 320, Taiwan
| |
Collapse
|
6
|
Yan Y, Guan S, Wang S, Xu J, Sun C. Synthesis and characterization of protocatechuic acid grafted carboxymethyl chitosan with oxidized sodium alginate hydrogel through the Schiff's base reaction. Int J Biol Macromol 2022; 222:2581-2593. [PMID: 36228813 DOI: 10.1016/j.ijbiomac.2022.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive accumulation of free radicals is closely related to the occurrence and development of various neurodegenerative diseases. In this study, a novel protocatechuic acid grafted carboxymethyl chitosan with oxidized sodium alginate (PCA-g-CMCS/OSA) hydrogel was developed to maintain the oxidation-antioxidation balance activities. By optimizing the pH-soluble range (pH > 6.4) of CMCS, PCA was grafted onto CMCS skeleton via EDC/NHS, and then conjugated with aldehyde group of OSA to form Schiff's base hydrogel at physiological temperature. The gelation time can be adjusted rapidly within 1-3 min by controlling the content of OSA. The shaped hydrogel exhibited porous network structure with high porosity (>90 %), swelling ratio (2000-3000 %) and rheological property, which is beneficial to cell growth and proliferation. The conjugates preserved excellent DPPH and ABTS radicals scavenging abilities and adequate biodegradability within 5 weeks. Moreover, with the release of PCA monomer due to degradation of the PCA-g-CMCS/OSA, the hydrogel also exhibited excellent biocompatibility and protective effect on H2O2-induced oxidative damage in PC12 cells. These results suggested that the PCA-g-CMCS/OSA hydrogel would appear to be a more attractive candidate for potential biomedical applications such as antioxidant drug release and tissue engineering implant material.
Collapse
|
7
|
Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022; 624:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most challenging, life-threatening illnesses to cure, with over 10 million new cases diagnosed each year globally. Improved diagnostic cum treatment with common side-effects are warranting for successful therapy. Nanomaterials are recognized to improve early diagnosis, imaging, and treatment. Recently, multifunctional nanocomposites attracted considerable interest due to their low-cost production, and ideal thermal and chemical stability, and will be beneficial in future diagnostics and customized treatment capacity. Stimuli-Responsive Hybrid Metal Nanocomposites (SRHMNs) based nanocomposite materials pose the on/off delivery of bioactive compounds such as medications, genes, RNA, and DNA to specific tissue or organs and reduce toxicity. They simultaneously serve as sophisticated imaging and diagnostic tools when certain stimuli (e.g., temperature, pH, redox, ultrasound, or enzymes) activate the nanocomposite, resulting in the imaging-guided transport of the payload at defined sites. This review in detail addresses the recent advancements in the design and mechanism of internal breakdown processes of the functional moiety from stimuli-responsive systems in response to a range of stimuli coupled with metal nanoparticles. Also, it provides a thorough understanding of SRHMNs, enabling non-invasive interventional therapy by resolving several difficulties in cancer theranostics.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
8
|
Liu Y, Zhu M, Meng M, Wang Q, Wang Y, Lei Y, Zhang Y, Weng L, Chen X. A dual-responsive hyaluronic acid nanocomposite hydrogel drug delivery system for overcoming multiple drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|