1
|
Chang J, Mapuranga J, Wang X, Dong H, Li R, Zhang Y, Li H, Shi J, Yang W. A thaumatin-like effector protein suppresses the rust resistance of wheat and promotes the pathogenicity of Puccinia triticina by targeting TaRCA. THE NEW PHYTOLOGIST 2024; 244:1947-1960. [PMID: 39290056 DOI: 10.1111/nph.20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Thaumatin-like proteins (TLPs) in plants play a crucial role in combating stress, and they have been proven to possess antifungal properties. However, the role of TLPs in pathogens has not been reported. We identified a effector protein, Pt9029, which contained a Thaumatin domain in Puccinia triticina (Pt), possessing a chloroplast transit peptide and localized in the chloroplasts. Silencing Pt9029 in the Pt physiological race THTT resulted in a notable reduction in virulence and stunted growth and development of Pt hypha in near-isogenic wheat line TcLr2b. Overexpression of Pt9029 in wheat exerted a suppressive effect on H2O2 production, consequently impeding the wheat's disease resistance mechanisms. The TLP domain of Pt9029 targets the Rubisco activase (TaRCA) in chloroplasts. This interaction effectively inhibited the function of TaRCA, subsequently leading to a decrease in Rubisco enzyme activity. Therefore, this indicates that TLPs in Pt can inhibit host defense mechanisms during the pathogenic process of Pt. Moreover, TaRCA silencing resulted in reduced resistance of TcLr2b against Pt race THTT. This clearly demonstrated that TaRCA positively regulates wheat resistance to leaf rust. These findings reveal a novel strategy exploited by Pt to manipulate wheat rust resistance and promote pathogenicity.
Collapse
Affiliation(s)
- Jiaying Chang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Johannes Mapuranga
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Xiaodong Wang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Haijiao Dong
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Ruolin Li
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Yingdan Zhang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Hao Li
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| | - Jie Shi
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, 071000, Baoding, China
| | - Wenxiang Yang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, 071000, Baoding, China
| |
Collapse
|
2
|
Feng L, Wei S, Li Y. Thaumatin-like Proteins in Legumes: Functions and Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1124. [PMID: 38674533 PMCID: PMC11055134 DOI: 10.3390/plants13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein-protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary.
Collapse
Affiliation(s)
- Lanlan Feng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shaowei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yin Li
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
3
|
Wang Z, Ding C, Tong Z, Yang L, Xiang S, Liang Y. Characterization and expression analysis of a thaumatin-like protein PpTLP1 from ground cherry Physalis pubescens. Int J Biol Macromol 2024; 254:127731. [PMID: 38287567 DOI: 10.1016/j.ijbiomac.2023.127731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Ground cherry, Physalis pubescens, is mainly cultivated as a fruit worldwide and popularly used as a food supplement and traditional Chinese medicine. Plants are challenged by external environmental stress and can initiate resistance to the stress through the regulation of pathogenesis-related (PR) proteins. Among PR proteins, PR-5, a thaumatin-like protein (TLP), was identified in many plants and found to be able to enhance stress resistance. However, PR-5 in ground cherry is not characterized and its expression is yet to be understood. In this study, a PR-5 protein PpTLP1 in P. pubescens was firstly identified. Analysis of the amino acid sequences revealed that PpTLP1 was highly similar to PR-NP24 identified in tomato with a difference in only one amino acid. Expression analysis indicated that the PpTLP1 gene was highly expressed in leaf while the PpTLP1 protein was tissue-specifically accumulated in cherry exocarp. Furthermore, the down-regulation of PpTLP1 in ground cherry was induced by NaCl treatment while the up-regulation was promoted by the infection of Sclerotinia sclerotiorum and Botrytis cinerea. This study will provide a new plant resource containing a TLP in Physalis genus and a novel insight for the improvement of postharvest management of ground cherry and other Solanaceae plants.
Collapse
Affiliation(s)
- Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhipeng Tong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Liuliu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shibo Xiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Liu R, Yang Z, Yang T, Wang Z, Chen X, Zhu J, Ren A, Shi L, Yu H, Zhao M. PRMT5 regulates the polysaccharide content by controlling the splicing of thaumatin-like protein in Ganoderma lucidum. Microbiol Spectr 2023; 11:e0290623. [PMID: 37882562 PMCID: PMC10715077 DOI: 10.1128/spectrum.02906-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE PRMT5 contributes to secondary metabolite biosynthesis in Ganoderma lucidum. However, the mechanism through which PRMT5 regulates the biosynthesis of secondary metabolites remains unclear. In the current study, PRMT5 silencing led to a significant decrease in the biosynthesis of polysaccharides from G. lucidum through the action of the alternative splicing of TLP. A shorter TLP2 isoform can directly bind to PGI and regulated polysaccharide biosynthesis. These results suggest that PRMT5 enhances PGI activity by regulating TLP binding to PGI. The results of the current study reveal a novel target gene for PRMT5-mediated alternative splicing and provide a reference for the identification of PRMT5 regulatory target genes.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhengyan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanshou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|