1
|
Li H, Guan Z, Wei L, Lu J, Tan Y, Wei Q. In situ co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials. Regen Biomater 2024; 11:rbae070. [PMID: 39022124 PMCID: PMC11254354 DOI: 10.1093/rb/rbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized in vitro a functional mineralized collagen fibril (MCF) material by utilizing the method of in situ co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.
Collapse
Affiliation(s)
- Han Li
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ziying Guan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Liren Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jian Lu
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
2
|
Zheng Y, Wang J, Xu K, Chen X. Intake of dietary flavonoids in relation to bone loss among U.S. adults: a promising strategy for improving bone health. Food Funct 2024; 15:766-778. [PMID: 38126227 DOI: 10.1039/d3fo02065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary flavonoids have been recommended for improving bone health due to their antioxidant, anti-inflammatory and osteogenic properties. However, the effectiveness of each flavonoid subclass in the prevention and treatment of osteoporosis remains controversial. The objective of the current study was to examine the association between the intake of flavonoid subclasses and bone loss in 10 480 U.S. adults in the National Health and Nutrition Examination Survey. We employed a multinomial logistic regression model to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). The intake of flavones, isoflavones, and flavanones was beneficially associated with osteoporosis (ORQ5 vs. Q1 = 0.44; 95% CI: 0.30-0.64 for flavones; ORQ5 vs. Q1 = 0.53; 95% CI: 0.37-0.77 for isoflavones; ORQ5 vs. Q1 = 0.66; 95% CI: 0.45-0.97 for flavanones). A higher intake of flavones and flavanones was significantly associated with a lower risk of bone loss at the femoral neck rather than the lumbar spine. Notably, stratified analysis showed that genistein had a harmful association with osteopenia in the population with lower serum calcium levels, whereas it had a beneficial association with osteoporosis in the population with higher serum calcium levels. Multiple sensitivity analyses were performed to test the robustness of the results, including subgroup analysis, exclusion of individuals' use of anti-osteoporosis, corticosteroid, and estrogenic medications, adjusting more potential confounders and calculation of the E-value. Overall, incorporating this modifiable diet into an individual's lifestyle could provide potential possibilities to prevent and ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
3
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
4
|
Gan J, Deng X, Le Y, Lai J, Liao X. The Development of Naringin for Use against Bone and Cartilage Disorders. Molecules 2023; 28:3716. [PMID: 37175126 PMCID: PMC10180405 DOI: 10.3390/molecules28093716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Collapse
Affiliation(s)
- Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaolan Deng
- Department of Pharmacy, Haikou Affiliated Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Yonghong Le
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| |
Collapse
|
5
|
Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030863. [PMID: 36986723 PMCID: PMC10054771 DOI: 10.3390/pharmaceutics15030863] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Polyphenols comprise a number of natural substances, such as flavonoids, that show interesting biological effects. Among these substances is naringin, a naturally occurring flavanone glycoside found in citrus fruits and Chinese medicinal herbs. Several studies have shown that naringin has numerous biological properties, including cardioprotective, cholesterol-lowering, anti-Alzheimer’s, nephroprotective, antiageing, antihyperglycemic, antiosteoporotic and gastroprotective, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects. Despite its multiple benefits, the clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. In addition, naringin shows instability at acidic pH, is enzymatically metabolized by β-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously. These limitations, however, have been overcome thanks to the development of naringin nanoformulations. This review summarizes recent research carried out on strategies designed to improve naringin’s bioactivity for potential therapeutic applications.
Collapse
|
6
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
7
|
Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021291. [PMID: 36674810 PMCID: PMC9867487 DOI: 10.3390/ijms24021291] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.
Collapse
Affiliation(s)
- Xiaojing Mo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dianjian Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Keda Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoxi Zhao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.L.); (W.W.)
| | - Wei Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Correspondence: (X.L.); (W.W.)
| |
Collapse
|
8
|
Liu Y, Zhao Q, Chen C, Wu C, Ma Y. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS One 2022; 17:e0277522. [PMID: 36480529 PMCID: PMC9731412 DOI: 10.1371/journal.pone.0277522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
The repair of infected bone defects remains a clinical challenge. Staphylococcus aureus is a common pathogenic micro-organism associated with such infections. Gentamycin (GM) is a broad spectrum antibiotic that can kill S. aureus in a dose-dependent manner. However, the systemic administration of antibiotics may lead to drug resistance and gut dysbiosis. In this work, we constructed β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres (CMs(GM)-β-TCP/gelatin composite scaffolds), which helped optimize the local GM release in the infected defect areas and enhance bone regeneration. The cumulative release curves showed that both microspheres and composite scaffolds reached a sustained slow-release phase after the initial rapid release, and the latter further stabilized the initial drug release rate. The release curve of CMs(GM)-β-TCP/gelatin composite scaffolds reached a plateau after 24 h, and the cumulative release reached 41.86% during this period. Moreover, the combination of β-TCP and gelatin mimicked bone composition and were able to provide the requisite mechanical strength (0.82 ± 0.05 MPa) during the first phase of bone generation. The inner structure of the scaffold was arranged in the shape of interconnected pores, and presented a porosity level of 16%. The apertures were uniform in size, which was beneficial for cell proliferation and material transportation. Macroscopic observation and histological analysis showed that CMs(GM)-β-TCP/gelatin composite scaffolds fused with bone tissues, and new tissues were formed in defect areas without any infection. This new composite scaffold may be a promising repair material for treating infected bone defects.
Collapse
Affiliation(s)
- Yu Liu
- Department of Orthopedics, Hospital of Zhejiang People’s Armed Police (PAP), Hangzhou, Zhejiang, China
| | - Qingqing Zhao
- Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Changsong Chen
- Department of Orthopedics, Hospital of Zhejiang People’s Armed Police (PAP), Hangzhou, Zhejiang, China
| | - Chunhu Wu
- Department of Orthopedics, Hospital of Zhejiang People’s Armed Police (PAP), Hangzhou, Zhejiang, China
| | - Yuhai Ma
- Department of Orthopedics, Hospital of Zhejiang People’s Armed Police (PAP), Hangzhou, Zhejiang, China,* E-mail:
| |
Collapse
|
9
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
10
|
Checinska K, Checinski M, Cholewa-Kowalska K, Sikora M, Chlubek D. Polyphenol-Enriched Composite Bone Regeneration Materials: A Systematic Review of In Vitro Studies. Int J Mol Sci 2022; 23:ijms23137473. [PMID: 35806482 PMCID: PMC9267334 DOI: 10.3390/ijms23137473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the possible alternatives for creating materials for the regeneration of bone tissue supporting comprehensive reconstruction is the incorporation of active substances whose controlled release will improve this process. This systematic review aimed to identify and synthesize in vitro studies that assess the suitability of polyphenolics as additives to polymer-ceramic composite bone regeneration materials. Data on experimental studies in terms of the difference in mechanical, wettability, cytocompatibility, antioxidant and anti-inflammatory properties of materials were synthesized. The obtained numerical data were compiled and analyzed in search of percentage changes of these parameters. The results of the systematic review were based on data from forty-six studies presented in nineteen articles. The addition of polyphenolic compounds to composite materials for bone regeneration improved the cytocompatibility and increased the activity of early markers of osteoblast differentiation, indicating a high osteoinductive potential of the materials. Polyphenolic compounds incorporated into the materials presumably give them high antioxidant properties and reduce the production of reactive oxygen species in macrophage cells, implying anti-inflammatory activity. The evidence was limited by the number of missing data and the heterogeneity of the data.
Collapse
Affiliation(s)
- Kamila Checinska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
- Correspondence: (K.C.); (D.C.)
| | - Maciej Checinski
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Cracow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: (K.C.); (D.C.)
| |
Collapse
|
11
|
Ming P, Rao P, Wu T, Yang J, Lu S, Yang B, Xiao J, Tao G. Biomimetic Design and Fabrication of Sericin-Hydroxyapatite Based Membranes With Osteogenic Activity for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:899293. [PMID: 35662836 PMCID: PMC9160433 DOI: 10.3389/fbioe.2022.899293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The guided tissue regeneration (GTR) technique is a promising treatment for periodontal tissue defects. GTR membranes build a mechanical barrier to control the ingrowth of the gingival epithelium and provide appropriate space for the regeneration of periodontal tissues, particularly alveolar bone. However, the existing GTR membranes only serve as barriers and lack the biological activity to induce alveolar bone regeneration. In this study, sericin-hydroxyapatite (Ser-HAP) composite nanomaterials were fabricated using a biomimetic mineralization method with sericin as an organic template. The mineralized Ser-HAP showed excellent biocompatibility and promoted the osteogenic differentiation of human periodontal membrane stem cells (hPDLSCs). Ser-HAP was combined with PVA using the freeze/thaw method to form PVA/Ser-HAP membranes. Further studies confirmed that PVA/Ser-HAP membranes do not affect the viability of hPDLSCs. Moreover, alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and RT-qPCR detection revealed that PVA/Ser-HAP membranes induce the osteogenic differentiation of hPDLSCs by activating the expression of osteoblast-related genes, including ALP, Runx2, OCN, and OPN. The unique GTR membrane based on Ser-HAP induces the differentiation of hPDLSCs into osteoblasts without additional inducers, demonstrating the excellent potential for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Piaoye Ming
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianli Wu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shi Lu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Binbin Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jingang Xiao, ; Gang Tao,
| | - Gang Tao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jingang Xiao, ; Gang Tao,
| |
Collapse
|
12
|
Fan Z, Liu H, Shi S, Ding Z, Zhang Z, Lu Q, Kaplan DL. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration. Mater Today Bio 2022; 15:100283. [PMID: 35634170 PMCID: PMC9130114 DOI: 10.1016/j.mtbio.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteogenesis-angiogenesis coupling processes play a crucial role in bone regeneration. Here, electric field induced aligned nanofiber layers with tunable thickness were coated on the surface of pore walls inside the deferoxamine (DFO)-laden silk fibroin (SF) and hydroxyapatite (HA) composite scaffolds to regulate the release of DFO to control vascularization dynamically. Longer electric field treatments resulted in gradually thickening layers to reduce the release rate of DFO where the released amount of DFO decreased gradually from 84% to 63% after 28 days. Besides the osteogenic capacity of HA, the changeable release of DFO brought different angiogenic behaviors in bone regeneration process, which provided a desirable niche with osteogenic and angiogenic cues. Anisotropic cues were introduced to facilitate cell migration inside the scaffolds. Changeable cytokine secretion from endothelial cells cultured in the different scaffolds revealed the regulation of cell responses related to vascularization in vitro. Peak expression of angiogenic factors appeared at days 7, 21 and 35 for endothelial cells cultured in the scaffolds with different silk nanofier layers, suggesting the dynamical regulation of angiogenesis. Although all of the scaffolds had the same silk and HA composition, in vitro cell studies indicated different osteogenic capacities for the scaffolds, suggesting that the regulation of DFO release also influenced osteogenesis outcomes in vitro. In vivo, the best bone regeneration occurred in defects treated with the composite scaffolds that exhibited the best osteogenic capacity in vitro. Using a rat bone defect model, healing was achieved within 12 weeks, superior to those treated with previous SF-HA composite matrices. Controlling angiogenic properties of bone biomaterials dynamically is an effective strategy to improve bone regeneration capacity. Anisotropic silk nanofiber layers with tunable thickness control the sustained release of DFO dynamically. Dynamical regulation of angiogenesis was achieved in bone regeneration process through tuning the release behaviors of DFO. Significantly improved bone regeneration through the synergistic effect of optimal vascularization and osteogenesis.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Shilei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, United States
| |
Collapse
|
13
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|