1
|
Nguyen HD, Jang M, Ngo HV, Gil MC, Jin G, Cui JH, Cao QR, Lee BJ. Physicochemical Properties, Drug Release and In Situ Depot-Forming Behaviors of Alginate Hydrogel Containing Poorly Water-Soluble Aripiprazole. Gels 2024; 10:781. [PMID: 39727539 DOI: 10.3390/gels10120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily injectable using a small 23 G needle. In addition, the ratio (w/w) of PLP and GDL altered the gelation time, which was longer as the PLP content increased but shorter as the GDL content increased. The alginate hydrogel with a ratio of PLP to GDL of 15:9 had the optimal physicochemical properties in terms of a clinically acceptable gelation time (9.1 min), in situ-depot formation with muscle-mimicking stiffness (3.55 kPa) and sustained release over a two-week period. The alginate hydrogel, which is tunable by varying the ratio of PLP and GDL, could provide a controllable pharmaceutical preparation to meet the need for long-acting performance of antipsychotic drugs like ARP.
Collapse
Affiliation(s)
- Hy D Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Munsik Jang
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai V Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Myung-Chul Gil
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Gang Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Andreica BI, Mititelu-Tartau L, Rosca I, Pelin IM, Nicol E, Marin L. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection. Carbohydr Polym 2024; 342:122389. [PMID: 39048229 DOI: 10.1016/j.carbpol.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.
Collapse
Affiliation(s)
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans, France
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
3
|
Voicu SN, Gheran CV, Balta C, Hermenean A, Callewaert M, Chuburu F, Dinischiotu A. In Vivo Evaluation of Innovative Gadolinium-Based Contrast Agents Designed for Bioimaging Applications. Polymers (Basel) 2024; 16:1064. [PMID: 38674983 PMCID: PMC11054998 DOI: 10.3390/polym16081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was the investigation of biochemical and histological changes induced in different tissues, as a result of the subcutaneous administration of Gd nanohydrogels (GdDOTA⸦CS-TPP/HA) in a CD-1 mouse strain. The nanohydrogels were obtained by encapsulating contrast agents (GdDOTA) in a biocompatible polymer matrix composed of chitosan (CS) and hyaluronic acid (HA) through the ionic gelation process. The effects of Gd nanohydrogels on the redox status were evaluated by measuring specific activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), and protein-reactive carbonyl groups (PRCG), in the liver, kidney, and heart tissues. The nitrosylated proteins expression were analyzed with Western Blot and the serum biochemical markers were measured with spectrophotometric methods. Also, a histological analysis of CD-1 mouse tissues was investigated. These results indicated that Gd nanohydrogels could potentially be an alternative to current MRI contrast agents thanks to their low toxicity in vivo.
Collapse
Affiliation(s)
- Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| | - Cecilia Virginia Gheran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| | - Cornel Balta
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (A.H.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (A.H.)
| | - Maité Callewaert
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France; (M.C.); (F.C.)
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France; (M.C.); (F.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| |
Collapse
|
4
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
5
|
Ailincai D, Cibotaru S, Anisiei A, Coman CG, Pasca AS, Rosca I, Sandu AI, Mititelu-Tartau L, Marin L. Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds. Carbohydr Polym 2023; 318:121135. [PMID: 37479445 DOI: 10.1016/j.carbpol.2023.121135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/23/2023]
Abstract
The paper reports new chitosan-based nanofibers, designed to address the healing of burn wounds. To this aim, mesoporous chitosan fiber mats were prepared by electrospinning using poly(ethylene oxide) as sacrificial additive, followed by loading with norfloxacin and coating with an antifungal agent via dynamic imine bonds. Dynamic vapor sorption experiment proved intra-fiber mesopores around 2.7 nm, and UV-vis, FTIR, and NMR spectroscopy confirmed the norfloxacin embedding and the imination reaction. SEM, AFM and POM techniques displayed semicrystalline nanofibers with average diameter around 170 nm entangled into a non-woven mat. Their mesoporous nature favored a rapid adsorption of fluids up to 17 g/g, and a biodegradation rate fitting the wound healing rate, i.e. up to 30 % mass loss in media of pH characteristic to wound exudate and total degradation in that characteristic to normal dermis. The composite fibers released the NFX and 2FPBA in a controlled manner, and showed antimicrobial activity against gram positive, gram negative and fungal strains. They had no cytotoxic effect on normal human dermal fibroblasts, and showed biocompatibility on experimental rats. The investigation of wound healing ability on second/third-degree burn model in rats revealed wound closure and total restoration of the fully functional dermis and epidermis.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Corneliu G Coman
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Aurelian Sorin Pasca
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
6
|
Ailincai D, Morariu S, Rosca I, Sandu AI, Marin L. Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels. Int J Biol Macromol 2023; 248:125800. [PMID: 37442500 DOI: 10.1016/j.ijbiomac.2023.125800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Microbial infections are a serious healthcare related problem, causing several complications and even death. That is why, the development of new drug delivery systems with prolonged effect represents an interesting research topic. This study presents the synthesis and characterization of new hydrogels based on chitosan and three halogenated monoaldehydes. Further, the hydrogels were used as excipients for the development of drug delivery systems (DDS) by the incorporation of fluconazole, an antifungal drug. The systems were structurally characterized by Fourier Transformed Infrared Spectroscopy and Nuclear Magnetic Resonance, both methods revealing the formation of the imine linkages between chitosan and the aldehydes. The samples presented a high degree of ordering at supramolecular level, as demonstrated by WXRD and POM and a good water-uptake, reaching a maximum of 1.6 g/g. The obtained systems were biodegradable, loosing between 38 and 49 % from their initial mass in the presence of lysozyme in 21 days. The ability to release the antifungal drug in a sustained manner for seven days, along with the high values of the inhibition zone diameter, reaching a maximum of 64 mm against Candida parapsilosis for the chlorine containing sample, recommend these systems as promising materials for bioapplications.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania.
| | - Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Andreea Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| |
Collapse
|
7
|
Himiniuc LM, Socolov R, Nica I, Agop M, Volovat C, Ochiuz L, Vasincu D, Rotundu AM, Rosu IA, Ghizdovat V, Volovat SR. Theoretical and Experimental Aspects of Sodium Diclofenac Salt Release from Chitosan-Based Hydrogels and Possible Applications. Gels 2023; 9:gels9050422. [PMID: 37233013 DOI: 10.3390/gels9050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Two formulations based on diclofenac sodium salt encapsulated into a chitosan hydrogel were designed and prepared, and their drug release was investigated by combining in vitro results with mathematical modeling. To understand how the pattern of drug encapsulation impacted its release, the formulations were supramolecularly and morphologically characterized by scanning electron microscopy and polarized light microscopy, respectively. The mechanism of diclofenac release was assessed by using a mathematical model based on the multifractal theory of motion. Various drug-delivery mechanisms, such as Fickian- and non-Fickian-type diffusion, were shown to be fundamental mechanisms. More precisely, in a case of multifractal one-dimensional drug diffusion in a controlled-release polymer-drug system (i.e., in the form of a plane with a certain thickness), a solution that allowed the model's validation through the obtained experimental data was established. The present research reveals possible new perspectives, for example in the prevention of intrauterine adhesions occurring through endometrial inflammation and other pathologies with an inflammatory mechanism background, such as periodontal diseases, and also therapeutic potential beyond the anti-inflammatory action of diclofenac as an anticancer agent, with a role in cell cycle regulation and apoptosis, using this type of drug-delivery system.
Collapse
Affiliation(s)
- Loredana Maria Himiniuc
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Razvan Socolov
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maricel Agop
- Department of Physics, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Rotundu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Iulian Alin Rosu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
8
|
Andreica BI, Anisiei A, Rosca I, Sandu AI, Pasca AS, Tartau LM, Marin L. Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine. Carbohydr Polym 2023; 302:120431. [PMID: 36604092 DOI: 10.1016/j.carbpol.2022.120431] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide). Their morphology and performances were systematically investigated and discussed in detail. It was found that the fibers had reversible water vapor adsorption/desorption and showed swelling degrees similar to commercial wound dressings. They presented good mechanical properties and the content of quaternized chitosan modulated their bioadhesion, mucoadhesion and biodegradation rate and conferred them strong antimicrobial activity. Tests on normal human fibroblasts confirmed their safely use in contact with tissues and the biocompatibility investigation on rats showed no harmful effect when subcutaneous implanted. All these proved the binary quaternized chitosan/chitosan fibers as bioactive materials suitable for tissue regeneration, wound healing and drug delivery systems.
Collapse
Affiliation(s)
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Aurelian Sorin Pasca
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, Iasi, Romania
| | | | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania.
| |
Collapse
|
9
|
Duceac IA, Coseri S. Chitosan Schiff-Base Hydrogels-A Critical Perspective Review. Gels 2022; 8:gels8120779. [PMID: 36547302 PMCID: PMC9777561 DOI: 10.3390/gels8120779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Chitosan is quite a unique polysaccharide due to the presence of the amine groups naturally occurring in its structure. This feature renders it into a polycation which makes it appealing for preparing polyelectrolyte complexes or imine bonds gels. Therefore, the vast majority of hydrogels prepared using Schiff base chemistry have chitosan as one component. Usually, the counterpart is a low molecular weight aldehyde or a macromolecular periodate-oxidized polysaccharide, i.e., cellulose, pullulan, starch, alginate, hyaluronic acid, etc. Indisputable advantages of hydrogels include their quick gelation, no need for crosslinking agents, and self-healing and injectability properties. This gives grounds for further research, both fundamental in materials science and applicative in various domains. This article is a critical assessment of the most relevant aspects of this topic. It also provides a short review of some of the most interesting research reported in the literature supporting the main observations of this perspective.
Collapse
|
10
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
11
|
Craciun AM, Morariu S, Marin L. Self-Healing Chitosan Hydrogels: Preparation and Rheological Characterization. Polymers (Basel) 2022; 14:polym14132570. [PMID: 35808616 PMCID: PMC9268889 DOI: 10.3390/polym14132570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
The paper aims at the preparation of chitosan self-healing hydrogels, designed as carriers for local drug delivery by parenteral administration. To this aim, 30 hydrogels were prepared using chitosan and pyridoxal 5-phosphate (P5P), the active form of vitamin B6 as precursors, by varying the ratio of glucosamine units and aldehyde on the one hand and the water content on the other hand. The driving forces of hydrogelation were investigated by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, and polarized light microscopy (POM) measurements. NMR technique was also used to investigate the stability of hydrogels over time, and their morphological particularities were assessed by scanning electron microscopy (SEM). Degradability of the hydrogels was studied in media of four different pH, and preliminary self-healing ability was visually established by injection through a syringe needle. In-depth rheological investigation was conducted in order to monitor the storage and loss moduli, linear viscoelastic regime, and structural recovery capacity. It was concluded that chitosan crosslinking with pyridoxal 5-phosphate is a suitable route to reach self-healing hydrogels with a good balance of mechanical properties/structural recovery, good stability over time, and degradability controlled by pH.
Collapse
|
12
|
Himiniuc L, Socolov R, Ghizdovat V, Agop M, Anton E, Toma B, Ochiuz L, Vasincu D, Popa O, Onofrei V. Infectious Inflammatory Processes and the Role of Bioactive Agent Released from Imino-Chitosan Derivatives Experimental and Theoretical Aspects. Polymers (Basel) 2022; 14:polym14091848. [PMID: 35567017 PMCID: PMC9100066 DOI: 10.3390/polym14091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The paper focuses on the development of a multifractal theoretical model for explaining drug release dynamics (drug release laws and drug release mechanisms of cellular and channel-type) through scale transitions in scale space correlated with experimental data. The mathematical model has been developed for a hydrogel system prepared from chitosan and an antimicrobial aldehyde via covalent imine bonds. The reversible nature of the imine linkage points for a progressive release of the antimicrobial aldehyde is controlled by the reaction equilibrium shifting to the reagents, which in turn is triggered by aldehyde consumption in the inhibition of the microbial growth. The development of the mathematical model considers the release dynamic of the aldehyde in the scale space. Because the release behavior is dictated by the intrinsic properties of the polymer–drug complex system, they were explained in scale space, showing that various drug release dynamics laws can be associated with scale transitions. Moreover, the functionality of a Schrödinger-type differential equation in the same scale space reveals drug release mechanisms of channels and cellular types. These mechanisms are conditioned by the intensity of the polymer–drug interactions. It was demonstrated that the proposed mathematical model confirmed a prolonged release of the aldehyde, respecting the trend established by in vitro release experiments. At the same time, the properties of the hydrogel recommend its application in patients with intrauterine adhesions (IUAs) complicated by chronic endometritis as an alternative to the traditional antibiotics or antifungals.
Collapse
Affiliation(s)
- Loredana Himiniuc
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (L.H.); (B.T.)
| | - Razvan Socolov
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (R.S.); (E.A.)
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Correspondence: (M.A.); (O.P.)
| | - Emil Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (R.S.); (E.A.)
| | - Bogdan Toma
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (L.H.); (B.T.)
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, ”Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Dental and Oro-Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (M.A.); (O.P.)
| | - Viviana Onofrei
- Department of Internal Medicine (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
13
|
Iftime MM, Rosca I, Sandu AI, Marin L. Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity. Int J Biol Macromol 2022; 205:574-586. [PMID: 35217080 DOI: 10.1016/j.ijbiomac.2022.02.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
The purpose of the study was to develop new antimicrobial hydrogels from natural resources that may promote wound healing and prevent bacterial skin infection. The new hydrogels were synthesized by crosslinking chitosan with a vanillin isomer, 5-methoxysalicylaldehyde, by a friendly and easy method. To characterize these hydrogels, their structural and morphological properties were explored by FTIR, 1H NMR, SEM, POM, and TGA. In view of the targeted application, swelling behavior, biodegradability, antimicrobial activity and biocompatibility were investigated in vitro. Structural and morphological studies confirmed the formation of new hydrogels via the imination reaction concomitant with the supramolecular organization. The hydrogels were highly porous with the average pore diameter around 80 μm, and a swelling rate controlled by the crosslinking density and medium pH. The hydrogels showed a progressive weight loss in the presence of lysozyme up to 35%, during 21 days of testing. They proved non-cytotoxic effect on Normal Human Dermal Fibroblasts using MTS test and powerful antifungal activity against Candida Albicans, as determined by disk diffusion assay. All these properties indicate the new hydrogels as a promising option for the treatment of various skin lesions.
Collapse
Affiliation(s)
- Manuela-Maria Iftime
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania.
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, Iasi, Romania
| |
Collapse
|