1
|
Lee H, Trinh BM, Mekonnen TH. Fabrication of Triblock Elastomer Foams and Gelation Studies for Oil Spill Remediation. Macromol Rapid Commun 2024; 45:e2400232. [PMID: 38840422 DOI: 10.1002/marc.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Polymeric foamed materials are among the most widely utilized technologies for oil spill accidents and releases of oil-contaminated wastewater oil due to their porosity to absorb and separate oil/water effectively. However, a major limitation of traditional polymeric foams is their reliance on an ad/absorption mechanism as the sole method of oil capture, leading to potential oil leakage once their saturation point is exceeded. Tri-block polymer styrene-ethylene-butylene-styrene (SEBS) is a fascinating absorbent material that can bypass this limitation by both capturing oil and providing a sealing mechanism via gelation to prevent oil leakage due to its unique chemical structure. SEBS foams are produced via simultaneous crosslinking and foaming that results in an impressive expansion ratio of up to 15.2 with over 93% porosity. Most importantly, the SEBS foams show great potential as oil absorbents in spill remediation, demonstrating rapid and efficient oil absorption coupled with superhydrophobic properties. Moreover, the unique interaction between the oil and SEBS enables the formation of a physical gel, acting as an effective barrier against oil leakage. These findings indicate the potential for commercializing SEBS foam as a viable option for geotextiles to mitigate oil spill concerns from infrastructures.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| | - Binh M Trinh
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| |
Collapse
|
2
|
Cui S, Wu M, Xu M, Li X, Ren Q, Wang L, Zheng W. Supercritical CO 2 extrusion foaming of highly open-cell poly(lactic acid) foam with superior oil adsorption performance. Int J Biol Macromol 2024; 269:132138. [PMID: 38718998 DOI: 10.1016/j.ijbiomac.2024.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.
Collapse
Affiliation(s)
- Shijie Cui
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China; Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minghui Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingxian Xu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Li
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Long Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Lima GMR, Mukherjee A, Picchioni F, Bose RK. Characterization of Biodegradable Polymers for Porous Structure: Further Steps toward Sustainable Plastics. Polymers (Basel) 2024; 16:1147. [PMID: 38675066 PMCID: PMC11054705 DOI: 10.3390/polym16081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics-polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 μm2, PBS showed an average porous area of 673 μm2, PHBV displayed open pores with an average area of 116.6 μm2, and PLA exhibited an average porous area of 620 μm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Product Technology Department, University of Groningen, 9747 AG Groningen, The Netherlands; (G.M.R.L.); (A.M.); (F.P.)
| |
Collapse
|
4
|
Yang H, Xu G, Li J, Wang L, Yu K, Yan J, Zhang S, Zhou H. Fabrication of bio-based biodegradable poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composite foams for highly efficient oil-water separation. Int J Biol Macromol 2024; 257:128750. [PMID: 38101682 DOI: 10.1016/j.ijbiomac.2023.128750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
The open-cell bio-based biodegradable polymer foams show good application prospect in dealing with the serious environmental issue caused by oil spill and organic solvents spills, while the cell structures and hydrophobic properties of the foams limit their performance. In this work, the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected to help prepare bio-based biodegradable poly(lactic acid) (PLA) foams. Based on a two-step foaming method, the crystallization ability of different samples was regulated by the "original crystals" together with PHBV in the foaming process, where skeleton structures were provided to facilitate the open-cell structures and promote their mechanical property. As illustrated, PHBV facilitated the formation of open-cell PLA foams, where the foams displayed superior oil-water separation capacity. The maximum volume expansion ratio of the foams was 80.08, the contact angle of deionized water reached to 134.5°, the adsorption capacity for oil or organic solvents was 10.8 g/g-51.8 g/g, and the adsorption capacity for CCl4 can still maintained 83.5 % of the initial value after 10 adsorption-desorption cycles. This work not only clarified the foaming mechanism of open-cell foams, but also provided a green and simple method for preparing bio-based biodegradable foams possessing excellent oil-water separation performance.
Collapse
Affiliation(s)
- Hailong Yang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Guohe Xu
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Jiantong Li
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Linyan Wang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China.
| | - Kesong Yu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Jundian Yan
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Shuo Zhang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Hongfu Zhou
- Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| |
Collapse
|
5
|
Li C, Hu J, Yan H, Yao Y, Zhang L, Bao J. Preparation of Open-Cell Long-Chain Branched Polypropylene Foams for Oil Absorption. ACS OMEGA 2023; 8:49372-49382. [PMID: 38162746 PMCID: PMC10753697 DOI: 10.1021/acsomega.3c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to prepare open-cell foams using a blend of long-chain branched polypropylene and polyolefin elastomer (LCBPP/POE) for the production of reusable oil absorbents. The supercritical CO2 foaming process was conducted using a two-step batch rapid depressurization method. This unique two-step foaming approach significantly expanded the temperature and pressure windows, resulting in more uniform cells with smaller sizes, ultimately leading to higher expansion ratios and an increased open cell content. The foaming process was optimized by adjusting parameters, such as the LCBPP/POE ratio, foaming temperature, and foaming pressure, reaching a maximum open cell content of 97.6% and a maximum expansion ratio of 48. The influence of polypropylene (PP) crystallization was investigated with the aid of scanning electron microscopy and differential scanning calorimetry. Furthermore, the hydrophobic and lipophilic characteristics of the LCBPP/POE open-cell foam were determined via contact angle measurements and oil/water separation tests. Oil absorption tests revealed that the blended LCBPP/POE foam has a higher oil absorption capacity than that of the pure LCBPP foam. The cyclic oil absorption tests demonstrated the outstanding ductility and recoverability of the LCBPP/POE open-cell foam in comparison to those of the pure LCBPP foam. Over 10 cycles, the LCBPP/POE foam maintained a substantial adsorption capacity, retaining 99.3% of its initial oil absorption capacity. With its notable features, including a high open cell content, excellent hydrophobic and lipophilic characteristics, superior oil absorption capacity, impressive cyclic oil absorption performance, and robust reusability, LCBPP/POE open-cell foams exhibit significant promise as potential oil adsorbents for use in oil spill cleanup applications.
Collapse
Affiliation(s)
- Chenhui Li
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key
Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jirun Hu
- Goettfert
(China) Limited, Shanghai 200083, China
| | - Haikuo Yan
- National
Engineering Lab of Textile Fiber Materials & Processing Technology
(Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyuan Yao
- National
Engineering Lab of Textile Fiber Materials & Processing Technology
(Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Zhang
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key
Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jinbiao Bao
- Ningbo
Micro-Foam Technology Co., Ltd., High-Tech Zone, Ningbo 315048, China
| |
Collapse
|
6
|
Yu K, Wang D, Hou J, Zhang X, Chen J. Fabrication of poly(lactic acid) foam with high expansion ratio and oriented cellular structure by restricting cold crystallization. Int J Biol Macromol 2023; 251:126463. [PMID: 37633546 DOI: 10.1016/j.ijbiomac.2023.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The foaming behavior of semi-crystalline polymers is significantly affected by their crystallization. To achieve high expansion ratio of poly(lactic acid) (PLA) foams, we thought its cold crystallization should be restricted. Therefore, we used a short soaking time of CO2 to fabricate high-expansion PLA foams. Dynamic mechanical analysis of unfoamed PLA showed that only one rubbery plateau was observed owing to complete cold crystallization under a soaking time of 40 min at 10 MPa. The crystal morphology demonstrated that a short soaking time of 3 min could restrict the cold crystallization of PLA. Owing to plasticization of CO2, PLA crystallization of was accelerated at low temperatures (40-80 °C) but hindered at high temperatures (80-130 °C) at 10 MPa. Foaming results showed that under a soaking time of 3 min, a high expansion ratio exceeding 10 was achievable over a wide foaming temperature range of 90 to 115 °C because more amorphous regions were preserved at 10 MPa. In addition, the prepared foams presented an oriented cellular structure. Compared with the isotropic foam, the anisotropic foam exhibited higher compressive strength and heat resistance. The prepared PLA foams have good application prospects in the fields such as cushioning, packaging, and construction.
Collapse
Affiliation(s)
- Kesong Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junji Hou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingbo Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Zhang Y, Sun T, Zhang D, Sun S, Liu J, Li B, Shi Z. The Preparation of Superhydrophobic Polylactic Acid Membrane with Adjustable Pore Size by Freeze Solidification Phase Separation Method for Oil-Water Separation. Molecules 2023; 28:5590. [PMID: 37513463 PMCID: PMC10384457 DOI: 10.3390/molecules28145590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
An environmentally friendly pore size-controlled, superhydrophobic polylactic acid (PLA) membrane was successfully prepared by a simpler freeze solidification phase separation method (FSPS) and solution impregnation, which has application prospects in the field of oil-water separation. The pore size and structure of the membrane were adjusted by different solvent ratios and solution impregnation ratios. The PLA-FSPS membrane after solution impregnation (S-PLA-FSPS) had the characteristics of uniform pore size, superhydrophobicity and super lipophilicity, its surface roughness Ra was 338 nm, and the contact angle to water was 151°. The S-PLA-FSPS membrane was used for the oil-water separation. The membrane oil flux reached 16,084 L·m-2·h-1, and the water separation efficiency was 99.7%, which was much higher than that of other oil-water separation materials. In addition, the S-PLA-FSPS membrane could also be applied for the adsorption and removal of oil slicks and underwater heavy oil. The S-PLA-FSPS membrane has great application potential in the field of oil-water separation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Tianyi Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dashuai Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Shishu Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Jinrui Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Bangsen Li
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zaifeng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
8
|
Li D, Zhang S, Zhao Z, Miao Z, Zhang G, Shi X. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation. Polymers (Basel) 2023; 15:polym15091984. [PMID: 37177130 PMCID: PMC10181122 DOI: 10.3390/polym15091984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Biodegradable polylactic acid (PLA) foams with open-cell structures are good candidates for oil-water separation. However, the foaming of PLA with high-expansion and uniform cell morphology by the traditional supercritical carbon dioxide microcellular foaming method remains a big challenge due to its low melting strength. Herein, a green facile strategy for the fabrication of open-cell fully biodegradable PLA-based foams is proposed by introducing the unique stereocomplexation mechanism between PLLA and synthesized star-shaped PDLA for the first time. A series of star-shaped PDLA with eight arms (8-s-PDLA) was synthesized with different molecular weights and added into the PLLA as modifiers. PLLA/8-s-PDLA foams with open-cells structure and high expansion ratios were fabricated by microcellular foaming with green supercritical carbon dioxide. In detail, the influences of induced 8-s-PDLA on the crystallization behavior, rheological properties, cell morphology and consequential oil-water separation performance of PLA-based foam were investigated systemically. The addition of 8-s-PDLA induced the formation of SC-PLA, enhancing crystallization by acting as nucleation sites and improving the melting strength through acting as physical cross-linking points. The further microcellular foaming of PLLA/8-s-PDLA resulted in open-cell foams of high porosity and high expansion ratios. With an optimized foaming condition, the PLLA/8-s-PDLA-13K foam exhibited an average cell size of about 61.7 μm and expansion ratio of 24. Furthermore, due to the high porosity of the interconnected open cells, the high-absorption performance of the carbon tetrachloride was up to 37 g/g. This work provides a facile green fabrication strategy for the development of environmentally friendly PLA foams with stable open-cell structures and high expansion ratios for oil-water separation.
Collapse
Affiliation(s)
- Dongsheng Li
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Zhang
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zezhong Zhao
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenyun Miao
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangcheng Zhang
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuetao Shi
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Zhou G, Liu W, Yin H, Zhang Y, Huang C. Effect of nano‐sized zinc citrate on the supercritical carbon dioxide‐assisted extrusion foaming behavior of poly(lactic acid). J Appl Polym Sci 2023. [DOI: 10.1002/app.53561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gang Zhou
- School of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Wenjun Liu
- Institute of New Materials & Industry Technology Wenzhou University Wenzhou China
| | - Haiyan Yin
- Biomaterials Division, Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Yinhang Zhang
- School of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| | - Chengzhe Huang
- School of Chemistry and Materials Engineering Wenzhou University Wenzhou China
| |
Collapse
|
10
|
Yu K, Wu Y, Zhang X, Hou J, Chen J. Microcellular open-cell poly(l-lactic acid)/poly(d-lactic acid) foams for oil-water separation prepared via supercritical CO2 foaming. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Peng K, Mubarak S, Diao X, Cai Z, Zhang C, Wang J, Wu L. Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO 2: A Review from 2020 to 2022. Polymers (Basel) 2022; 14:polym14204320. [PMID: 36297898 PMCID: PMC9611929 DOI: 10.3390/polym14204320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The development of degradable plastic foams is in line with the current development concept of being pollution free and sustainable. Poly(lactic acid) (PLA) microporous foam with biodegradability, good heat resistance, biocompatibility, and mechanical properties can be successfully applied in cushioning packaging, heat insulation, noise reduction, filtration and adsorption, tissue engineering, and other fields. This paper summarizes and critically evaluates the latest research on preparing PLA microporous materials by supercritical carbon dioxide (scCO2) physical foaming since 2020. This paper first introduces the scCO2 foaming technologies for PLA and its composite foams, discusses the CO2-assisted foaming processes, and analyzes the effects of process parameters on PLA foaming. After that, the paper reviews the effects of modification methods such as chemical modification, filler filling, and mixing on the rheological and crystallization behaviors of PLA and provides an in-depth analysis of the mechanism of PLA foaming behavior to provide theoretical guidance for future research on PLA foaming. Lastly, the development and applications of PLA microporous materials based on scCO2 foaming technologies are prospected.
Collapse
Affiliation(s)
- Kangming Peng
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Suhail Mubarak
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu-si 59626, Jeonnam, Korea
| | - Xuefeng Diao
- Jinyoung (Xiamen) Advanced Materials Technology Co., Ltd., Xiamen 361028, China
| | - Zewei Cai
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chen Zhang
- School of Materials and Chemistry Engineering, Minjiang University, Xiyuangong Road No. 200, Fuzhou 350108, China
- Industrial Design Institute, Minjiang University, Xiyuangong Road No. 200, Fuzhou 350108, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| | - Jianlei Wang
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (C.Z.); (J.W.); (L.W.)
| |
Collapse
|
12
|
Wu Y, Zhang S, Han S, Yu K, Wang L. Regulating cell morphology of poly (lactic acid) foams from microcellular to nanocellular by crystal nucleating agent. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|