1
|
Santos PA, Uczay M, Pflüger P, Lobo LAC, Rott MB, Fontenla JA, Rodrigues Siqueira I, Pereira P. Toxicological assessment of the Achyrocline satureioides aqueous extract in the Caenorhabditis elegans alternative model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:730-751. [PMID: 38904345 DOI: 10.1080/15287394.2024.2368618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.
Collapse
Affiliation(s)
- Péterson Alves Santos
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Uczay
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pricila Pflüger
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Larissa Aline Carneiro Lobo
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ionara Rodrigues Siqueira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pereira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Pei H, Lin Z, Yao K, Luo Y, Tong P, Chen H, Wu Y, Wu Z, Gao J. Ovalbumin promotes innate immune response of Caenorhabditis elegans through DAF-16 and SKN-1 pathways in insulin/IGF-1 signaling. J Physiol Biochem 2024; 80:541-559. [PMID: 38632209 DOI: 10.1007/s13105-024-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Ovalbumin (OVA) is a major allergen in eggs and could induce severe allergic reactions in sensitive individuals, where the innate immune system works as a regulator. The mechanism of how innate immunity adjusts to food allergy is relatively well-studied, however, the effects of allergen uptake on the innate immune system remain unclear. Therefore, the Caenorhabditis elegans (C. elegans) model was utilized to assess the effects of OVA on its innate immune system. OVA enhanced the immune response of C. elegans with higher survival rates under Pseudomonas aeruginosa infection. Moreover, sustaining OVA treatment improved the health states that were reflected in the prolonged lifespan, alleviated oxidative stress, accelerated growth, and promoted motility. RNA-sequencing analysis and the slow-killing assays in the mutants of insulin/IGF-1 signaling (IIS)-related genes confirmed that IIS was necessary for OVA to regulate innate immunity. Besides, OVA activated SKN-1 temporarily and facilitated the nuclear localization of DAF-16 for improving immunity and health status in C. elegans. Together, OVA could enhance the innate immune responses via DAF-16 and SKN-1 pathways in the IIS of C. elegans, and this work will provide novel insights into the regulation of innate immunity by OVA in higher organisms.
Collapse
Affiliation(s)
- Haibing Pei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Zhiyin Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Kexin Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Yeqing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China.
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China.
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China.
| |
Collapse
|
3
|
Guo F, Liu H, Li X, Hu Z, Huang J, Bi R, Abbas W, Guo Y, Wang Z. Sophy β-Glucan from the Black Yeast Aureobasidium pullulans Attenuates Salmonella-Induced Intestinal Epithelial Barrier Injury in Caco-2 Cell Monolayers via Exerting Anti-Oxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2023; 13:48. [PMID: 38247473 PMCID: PMC10812733 DOI: 10.3390/antiox13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
The zoonotic pathogens Salmonella spp. infection disrupted intestinal epithelial barrier function and induced local gastroenteritis and systemic inflammation in humans and animals. Sophy β-glucan, a water-soluble β-1,3/1,6-glucan synthesized from the black yeast Aureobasidium pullulans, was reported with immune-regulatory, anti-inflammatory, and anti-infective properties. Here, we investigated the protective role of sophy β-glucan on Salmonella enterica serotype Enteritidis (SE)-challenged Caco-2 cells monolayer and explored underlying action mechanisms. The results showed that pretreatment with sophy β-glucan blocked the adhesion and invasion of SE onto Caco-2 cells along with alleviating SE-induced epithelial barrier injury, as evidenced by increased trans-epithelial electrical resistance, decreased fluorescently-labeled dextran 4 flux permeability, and an enhanced Claudin-4 protein level in the SE-stimulated Caco-2 cell monolayer. Moreover, treatment with β-glucan down-regulated pro-inflammatory factors (IL-1β, IL-8, and TNF-α) while up-regulating anti-inflammatory factors IL-10 at mRNA and protein levels in SE-infected Caco-2 cells. Furthermore, sophy β-glucan strengthened the anti-oxidative capacity of Caco-2 monolayers cells by elevating T-AOC and SOD activity and inhibiting MDA production defending SE. Together, our data showed that sophy β-glucan could prevent intestinal epithelial injury induced by SE, possibly by exerting anti-oxidant and anti-inflammatory properties, and it might be helpful for controlling SE infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.G.); (H.L.); (X.L.); (Z.H.); (J.H.); (R.B.); (W.A.); (Y.G.)
| |
Collapse
|
4
|
Wang Y, Zou Y, Fang Q, Feng R, Zhang J, Zhou W, Wei Q. Polysaccharides from Brasenia schreberi with Great Antioxidant Ability and the Potential Application in Yogurt. Molecules 2023; 29:150. [PMID: 38202733 PMCID: PMC10780003 DOI: 10.3390/molecules29010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the polysaccharides using various methods and assessed their antioxidant capabilities both in vitro and in vivo, employing cell cultures and Caenorhabditis elegans. Furthermore, these polysaccharides were incorporated into a unique yogurt formulation. Our findings demonstrated that hot water extraction was the most suitable method for extracting polysaccharides from B. schreberi, yielding samples with high sugar content, significant antioxidant capacity, and a well-defined spatial structure. Moreover, pectinase was employed for polysaccharide digestion, achieving an enzymolysis rate of 10.02% under optimized conditions using RSM. Notably, the results indicated that these polysaccharides could protect cells from oxidative stress by reducing apoptosis. Surprisingly, at a concentration of 250 μg/mL, the polysaccharides significantly increased the survival rate of C. elegans from 31.05% to 82.3%. Further qPCR results revealed that the polysaccharides protected C. elegans by up-regulating the daf-16 gene and down-regulating mTOR and insulin pathways, demonstrating remarkable antioxidant abilities. Upon addition to the yogurt, the polysaccharides significantly enhanced the water retention, viscosity, and viability of lactic acid bacteria. These outcomes underscore the potential of polysaccharides from B. schreberi as a valuable addition to novel yogurt formulations, thereby providing additional theoretical support for the utilization of B. schreberi.
Collapse
Affiliation(s)
- Yujie Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Yue Zou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qiong Fang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Jihong Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Wanhai Zhou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| |
Collapse
|
5
|
Zeng F, Lai M, Li Q, Zhang H, Chen Z, Gong S, Liu X, Liu B. Anti-oxidative and anti-aging effects of mannoprotein-rich yeast cell wall enzymatic hydrolysate by modulating gut microbiota and metabolites in Caenorhabditis elegans. Food Res Int 2023; 170:112753. [PMID: 37316035 DOI: 10.1016/j.foodres.2023.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
In this study, antioxidant and anti-aging studies were carried out by mannoprotein-rich yeast cell wall enzymatic hydrolysate (MYH) obtained by enzymatic hydrolysis of yeast cell wall through the Caenorhabditis elegans (C. elegans) model. It was found that MYH could improve the lifespan and anti-stress ability of C. elegans by increasing the activity of antioxidant enzymes such as T-SOD, GSH-PX and CAT, and reducing the levels of MDA, ROS and apoptosis. At the same time, through the verification expression of corresponding mRNA, it was found that MYH exerted antioxidant and anti-aging activities by up-regulating the translation of MTL-1, DAF-16, SKN-1 and SOD-3 mRNA, and down-regulating the translation of AGE-1 and DAF-2 mRNA. In addition, it was found that MYH could improve the composition and distribution of the gut microbiota of C. elegans, and significantly improve the level of metabolites through the sequencing of gut microbiota and untargeted metabolomic studies. It has contributed to studying the antioxidant and anti-aging activities of microorganisms such as yeast through the level of gut microbiota and metabolites and the development of related functional foods.
Collapse
Affiliation(s)
- Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiying Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China; School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhixian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Shiyu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells. Metabolites 2023; 13:metabo13020223. [PMID: 36837842 PMCID: PMC9962758 DOI: 10.3390/metabo13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Barley bran has potential bioactivities due to its high content of polyphenols and dietary fiber, etc. Fermentation has been considered as an effective way to promote the functional activity of food raw materials. In this study, polysaccharides from barley bran extract fermented by Lactiplantibacillus plantarum dy-1 (FBBE-PS) were analyzed, and its effects on lipid accumulation and oxidative stress in high-fat HepG2 cells induced by sodium oleate were evaluated. The results showed that the molecular weight decreased and monosaccharide composition of polysaccharides changed significantly after fermentation. In addition, 50 μg/mL FBBE-PS could reduce the triglyceride (TG) content and reaction oxygen species (ROS) level in high-fat HepG2 cells by 21.62% and 30.01%, respectively, while increasing the activities of superoxide dismutase (SOD) and catalase (CAT) represented by 64.87% and 22.93%, respectively. RT-qPCR analysis revealed that FBBE-PS could up-regulate the lipid metabolism-related genes such as ppar-α, acox-1 and cpt-1α, and oxidation-related genes such as nrf2, ho-1, nqo-1, sod1, cat, etc. The metabolomics analysis indicated that FBBE-PS could alleviate lipid deposition by inhibiting the biosynthesis of unsaturated fatty acids, which is consistent with the downregulation of scd-1 expression. It is demonstrated that fermentation can alter the properties and physiological activities of polysaccharides in barley bran, and FBBE-PS exhibited an alleviating effect on lipid deposition and oxidative stress in high-fat cells.
Collapse
|
7
|
Li J, Zhou Y, Zhang J, Cui L, Lu H, Zhu Y, Zhao Y, Fan S, Xiao X. Barley β-glucan inhibits digestion of soybean oil in vitro and lipid-lowering effects of digested products in cell co-culture model. Food Res Int 2023; 164:112378. [PMID: 36737963 DOI: 10.1016/j.foodres.2022.112378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The effect of barley β-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley β-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley β-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley β-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley β-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley β-glucan.
Collapse
Affiliation(s)
- Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haina Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Ding AJ, Zhang WM, Tao J, Chen B, Liu XC, Dong Y, Ma HJ, Pan SD, He JB, Zeng WK. Salmonella enterica serovar Paratyphi A-induced immune response in Caenorhabditis elegans depends on MAPK pathways and DAF-16. Front Immunol 2023; 14:1118003. [PMID: 37122724 PMCID: PMC10132459 DOI: 10.3389/fimmu.2023.1118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Salmonella enterica serovar Paratyphi A (S. Paratyphi A) is a pathogen that can cause enteric fever. According to the recent epidemic trends of typhoid fever, S. Paratyphi A has been the major important causative factor in paratyphoid fever. An effective vaccine for S. Paratyphi A has not been developed, which made it a tricky public health concern. Until now, how S. Paratyphi A interacts with organisms remain unknown. Here using lifespan assay, we found that S. Paratyphi A could infect Caenorhabditis elegans (C. elegans) at 25°C, and attenuate thermotolerance. The immune response of C. elegans was mediated by tir-1, nsy-1, sek-1, pmk-1, mpk-1, skn-1, daf-2 and daf-16, suggesting that S. Paratyphi A could regulate the MAPK and insulin pathways. Furthermore, we observed several phenotypical changes when C. elegans were fed S. Paratyphi A, including an accelerated decline in body movement, reduced the reproductive capacity, shortened spawning cycle, strong preference for OP50, arrested pharyngeal pumping and colonization of the intestinal lumen. The virulence of S. Paratyphi A requires living bacteria and is not mediated by secreting toxin. Using hydrogen peroxide analysis and quantitative RT-PCR, we discovered that S. Paratyphi A could increase oxidative stress and regulate the immune response in C. elegans. Our results sheds light on the infection mechanisms of S. Paratyphi A and lays a foundation for drugs and vaccine development.
Collapse
|
9
|
Wang G, Song B, Jia X, Yin H, Li R, Liu X, Chen J, Zhang J, Wang Z, Zhong S. Ceramides from Sea Red Rice Bran Improve Health Indicators and Increase Stress Resistance of Caenorhabditis elegans through Insulin/IGF-1 Signaling (IIS) Pathway and JNK-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15080-15094. [PMID: 36417897 DOI: 10.1021/acs.jafc.2c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiaging effects of sea red rice bran in vivo, a new saline-tolerant sea rice byproduct containing high levels of ceramides (Cers), remain unknown. This study aimed to explore the antiaging effects exerted by Cers from sea red rice bran on Caenorhabditis elegans, assess its health indicators as well as tolerance, and then reveal the mechanism of action of Cers in prolonging the mean life span through genetic studies. The results indicated that the mean life span of Cers-treated C. elegans were dose-dependent in the range of 0.10-0.50 mg/mL. Additionally, Cers improved nematode motility, reduced lipofuscin accumulation, and enhanced resistance to heat stress and antioxidant enzyme activity. Genetic studies showed that Cers treatment had altered nematode gene expression. In addition, insulin/IGF-1 and jnk-1/mitogen-activated protein kinase (MAPK) signaling pathways successfully demonstrated the longevity effects of Cers intake. In short, these results suggest that Cers enhance the resistance of C. elegans and prolong its life span.
Collapse
Affiliation(s)
- Gang Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huan Yin
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jieliang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Wu Y, Yang J, Xu C, Li Q, Ma Y, Zhao S, Zhuang J, Shen F, Wang Q, Feng F, Zhang X. Sea cucumber ( Acaudina leucoprocta) peptides extended the lifespan and enhanced antioxidant capacity via DAF-16/DAF-2/SOD-3/OLD-1/PEPT-1 in Caenorhabditis elegans. Front Nutr 2022; 9:1065145. [PMID: 36483922 PMCID: PMC9723373 DOI: 10.3389/fnut.2022.1065145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 09/29/2023] Open
Abstract
The sea cucumber peptides (SCPs) from Acaudina leucoprocta were derived from the patented bio-enzyme digestion technology and the molecular weight of obtained SCPs was < 10 kDa. In this study, we investigated the possible anti-aging effects of SCPs on the model of Caenorhabditis elegans and the underlying mechanisms. SCPs extend the average lifespan of nematodes by 31.46%. SCPs enhance the anti-stress capacity of C. elegans by improving heat resistance and mobility, Also, the accumulated potential oxidative stress inducers like lipofuscin and reactive oxygen species (ROS) were reduced to 40.84 and 71.43%. In addition, SCPs can increase the antioxidant capacity in nematodes by enhancing the activity of SOD and CAT and reducing MDA accumulation in nematodes to 32.44%. Mechanistically, SCPs could mediate DAF-16/DAF-2/SOD-3/OLD-1/PEPT-1 axis to improve antioxidant capacity and extend lifespan in nematodes. Taken together, these findings provide a direction for the anti-aging effects of sea cucumber peptides and new insights into the further purifications of SCPs and future research on aging.
Collapse
Affiliation(s)
- Yue Wu
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jingjuan Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengmei Xu
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiuqi Li
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yage Ma
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Shenglan Zhao
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jiachen Zhuang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Shen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qianqian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fengqin Feng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xi Zhang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Li P, Liu Y, Zhao J, Pan W, He Y, Fu S, Liu Y, Xu YJ. Salecan ameliorates liver injury by regulating gut microbiota and its metabolites. Food Funct 2022; 13:11744-11757. [DOI: 10.1039/d2fo02210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salecan ameliorates liver injury by regulating oxidative stress and the gut microbiota.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Department of Food Science and Technology, Ocean University of China, Yushan Road, Qingdao, 266003, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd, 88 Keyuan South Road, Chengdu 610000, Sichuan, China
| | - Wenjie Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Shunzhe Fu
- Shenzhen JinBoJin Supply Chain Co., Ltd, 8 Guishan Road, Shenzhen 515100, Guangdong, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|