1
|
Yu Y, Su Z, Peng Y, Zhong Y, Wang L, Xin M, Li M. Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review. Int J Biol Macromol 2024; 289:138772. [PMID: 39675610 DOI: 10.1016/j.ijbiomac.2024.138772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a natural polysaccharide with recognized biocompatibility, non-toxicity, and cost-effectiveness, is primarily sourced from crustacean exoskeletons. Its inherent limitations such as poor water solubility, low thermal stability, and inadequate mechanical strength have hindered its widespread application. However, through modifications, chitosan can exhibit enhanced properties such as water solubility, antibacterial and antioxidant activities, adsorption capacity, and film-forming ability, opening up avenues for diverse applications. Despite these advancements, realizing the full potential of modified chitosan remains a challenge across various fields. The purpose of this review article is to conduct a comprehensive evaluation of the chemical modification techniques of chitosan and their applications in biotechnology and biomedical fields. It aims to overcome the inherent limitations of chitosan, such as low water solubility, poor thermal stability, and inadequate mechanical strength, thereby expanding its application potential across various domains. This review is structured into two main sections. The first part delves into the latest chemical modification techniques for chitosan derivatives, encompassing quaternization, Schiff base formation, acylation, carboxylation, and alkylation reactions. The second part provides an overview of the applications of chitosan and its derivatives in biotechnology and biomedicine, spanning areas such as wastewater treatment, the textile and food industries, agriculture, antibacterial and antiviral activities, drug delivery systems, wound dressings, dental materials, and tissue engineering. Additionally, the review discusses the challenges associated with these modifications and offers insights into potential future developments in chitosan-based materials. This review is anticipated to offer theoretical insights and practical guidance to scientists engaged in biotechnology and biomedical research.
Collapse
Affiliation(s)
- Ying Yu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yonggang Peng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yujing Zhong
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Lin Wang
- College of Chemistry and Environment, Ankang University, Qinba Chinese Medicine Resources R&D Center, Ankang 725000, Shaanxi, China.
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
2
|
Ghosh Majumdar A, Pany B, Parua SS, Mukherjee D, Panda A, Mohanty M, Das B, Si S, Mohanty PS. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BIONANOSCIENCE 2024; 14:3496-3521. [DOI: 10.1007/s12668-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
3
|
Del Giudice F, Curtis DJ, Aufderhorst-Roberts A. A New Approach for On-Chip Production of Biological Microgels Using Photochemical Cross-Linking. Anal Chem 2024; 96:10140-10144. [PMID: 38862384 PMCID: PMC11209654 DOI: 10.1021/acs.analchem.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Photochemical cross-linking is a key step for manufacturing microgels in numerous applications, including drug delivery, tissue engineering, material production, and wound healing. Existing photochemical cross-linking techniques in microfluidic devices rely on UV curing, which can cause cell and DNA damage. We address this challenge by developing a microfluidic workflow for producing microgels using visible light-driven photochemical cross-linking of aqueous droplets dispersed in a continuous oil phase. We report a proof-of-concept to construct microgels from the protein Bovine Serum Albumin (BSA) with [Ru(bpy)3]2+ mediated cross-linking. By controlling the capillary number of the continuous and dispersed phases, the volumetric flow rate, and the photochemical reaction time within the microfluidic tubing, we demonstrate the construction of protein microgels with controllable and uniform dimensions. Our technique can, in principle, be applied to a wide range of different proteins with biological and responsive properties. This work therefore bridges the gap between hydrogel manufacturing using visible light and microfluidic microgel templating, facilitating numerous biomedical applications.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Dan J. Curtis
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | | |
Collapse
|
4
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
5
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
6
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
7
|
Bai X, Jiang J, Tu S, Zhang W. Hydrogels Loaded with Atorvastatin-Metal Organic Framework Have a Preventive Effect on Coronary Heart Disease. Chem Biodivers 2024; 21:e202301511. [PMID: 38063816 DOI: 10.1002/cbdv.202301511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 02/22/2024]
Abstract
In the research, a new three-dimensional coordination polymer was synthesized by solvothermal method based on the metal ligand LCu =[Cu(2,4-pydca)2 ]2- (2,4-pydca=pyridine-2,4-dicarboxylate) and alkaline-earth ion CaII with chemical composition {[Ca(H2 O)2 ][LCu ]⋅DMSO ⋅ 2H2 O}n (1) (DMSO=dimethyl sulfoxide). The complex 1 was characterized soundly by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (EA), single-crystal X-ray diffraction (SCXRD) and thermogravimetric analysis (TGA). Using atorvastatin as drug model, carboxymethyl chitosan and calcium alginate as raw materials, a new type of metal gel particles was prepared. The microstructure of the gel was observed by scanning Electron Microscope (SEM) and its modulation effect on the activity of human cardiomyocytes was evaluated. The results show that the gel particles presented a three-dimensional porous structure and were able to significantly up-regulate the cell activity of human cardiomyocytes, which is expected to develop the metal gel particles into drugs for the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Xinghua Bai
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sijia Tu
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Weizong Zhang
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Siddiqui L, Hasan N, Mishra PK, Gupta N, Singh AT, Madaan A, Jaggi M, Saad S, Ekielski A, Iqbal Z, Kesharwani P, Talegaonkar S. CD44 mediated colon cancer targeting mutlifaceted lignin nanoparticles: Synthesis, in vitro characterization and in vivo efficacy studies. Int J Pharm 2023; 643:123270. [PMID: 37499773 DOI: 10.1016/j.ijpharm.2023.123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Hyaluronic acid (HA) coated irinotecan loaded lignin nanoparticles (HDLNPs) were synthesized using ionic interaction method. Optimized nanoparticles were characterized for their active chemotherapeutic targeting potential to CD44 receptors overly-expressed on cancer cells. Blood component interaction studies supported hemocompatible nature of HDLNPs and also demonstrated their sustained plasma residence property. Cell anti-proliferation and mitochondrial depolarization studies on HT-29 cells suggest significantly (p < 0.01) improved chemotherapeutic efficacy of HDLNPs. In vitro cell based studies showed that nanoparticles have retained antioxidant activity of lignin that can prevent cancer relapse. In vivo biodistribution studies in tumor-bearing Balb/c mice confirmed improved drug localization in tumor site for longer duration. Tumor regression and histopathological studies indicated the efficacy ofligand-assisted targeting chemotherapy over the conventional therapy. Hematological and biochemical estimation suggested that irinotecan-associated myelosuppression, liver steatosis and rare kidney failure can be avoided by its encapsulation in HA-coated lignin nanoparticles. HDLNPs were found to be stable over a period of 12 months.
Collapse
Affiliation(s)
- Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic.
| | - Neha Gupta
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Ari B, Sahiner M, Suner SS, Demirci S, Sahiner N. Super-Macroporous Pulluan Cryogels as Controlled Active Delivery Systems with Controlled Degradability. MICROMACHINES 2023; 14:1323. [PMID: 37512634 PMCID: PMC10385955 DOI: 10.3390/mi14071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Here, super-macroporous cryogel from a natural polysaccharide, pullulan was synthesized using a cryo-crosslinking technique with divinyl sulfone (DVS) as a crosslinker. The hydrolytic degradation of the pullulan cryogel in various simulated body fluids (pH 1.0, 7.4, and 9.0 buffer solutions) was evaluated. It was observed that the pullulan cryogel degradation was much faster in the pH 9 buffer solution than the pH 1.0 and 7.4 buffer solutions in the same time period. The weight loss of the pullulan cryogel at pH 9.0 within 28 days was determined as 31% ± 2%. To demonstrate the controllable drug delivery potential of pullulan cryogels via degradation, an antibiotic, ciprofloxacin, was loaded into pullulan cryogels (pullulan-cipro), and the loading amount of drug was calculated as 105.40 ± 2.6 µg/mg. The release of ciprofloxacin from the pullulan-cipro cryogel was investigated in vitro at 37.5 °C in physiological conditions (pH 7.4). The amount of drug released within 24 h was determined as 39.26 ± 3.78 µg/mg, which is equal to 41.38% ± 3.58% of the loaded drug. Only 0.1 mg of pullulan-cipro cryogel was found to inhibit half of the growing Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) colonies for 10 min and totally eradicated within 2 h by the release of the loaded antibiotic. No significant toxicity was determined on L929 fibroblast cells for 0.1 mg drug-loaded pullulan cryogel. In contrast, even 1 mg of drug-loaded pullulan cryogel revealed slight toxicity (e.g., 66% ± 9% cell viability) because of the high concentration of released drug.
Collapse
Affiliation(s)
- Betul Ari
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Chitosan (CS) and its derivatives have been applied extensively in the biomedical field owing to advantageous characteristics including biodegradability, biocompatibility, antibacterial activity and adhesive properties. The low solubility of CS at physiological pH limits its use in systems requiring higher dissolving ability and a suitable drug release rate. Besides, CS can result in fast drug release because of its high swelling degree and rapid water absorption in aqueous media. As a water-soluble derivative of CS, carboxymethyl chitosan (CMC) has certain improved properties, rendering it a more suitable candidate for wound healing, drug delivery and tissue engineering applications. This review will focus on the antibacterial, anticancer and antitumor, antioxidant and antifungal bioactivities of CMC and the most recently described applications of CMC in wound healing, drug delivery, tissue engineering, bioimaging and cosmetics.
Collapse
|
11
|
Yan Y, Ren P, Wu Q, Zhang T. Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing. Biomolecules 2022; 12:1582. [PMID: 36358932 PMCID: PMC9687833 DOI: 10.3390/biom12111582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by zinc ions and coordinated through the complex of carboxymethyl chitosan and aldehyde hyaluronic acid) as a novel crosslinker. Then the cation was introduced as a second crosslinker to create a double crosslinked network. The method leads to the precise regulation of the hydrogel characters, including the biodegradation rate and the controlled release rate of the drug. As a result, the optimized hydrogels facilitated the live-cell infiltration in vitro and boosted the tissue regeneration of diabetic wounds in vivo. The results indicated that the addition of the microgel as a new crosslinker created flexibility during the construction of the alginate hydrogel, adapting for diverse applications during diabetic-induced wound therapy.
Collapse
Affiliation(s)
- Yishu Yan
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Panpan Ren
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Qingqing Wu
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, Jinan 250101, China
| |
Collapse
|
12
|
Ullah F, Shah KU, Shah SU, Nawaz A, Nawaz T, Khan KA, Alserihi RF, Tayeb HH, Tabrez S, Alfatama M. Synthesis, Characterization and In Vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers (Basel) 2022; 14:polym14173564. [PMID: 36080637 PMCID: PMC9460706 DOI: 10.3390/polym14173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to synthesise montelukast-loaded polymeric nanoparticles via the ionic gelation method using chitosan as a natural polymer and tripolyphosphate as a crosslinking agent. Tween 80, hyaluronic acid and leucine were added to modify the physicochemical properties of nanoparticles, reduce the nanoparticles’ uptake by alveolar macrophages and improve powder aerosolisation, respectively. The nanoparticles ranged from 220 nm to 383 nm with a polydispersity index of ≤0.50. The zeta potential of nanoparticles ranged from 11 mV to 22 mV, with a drug association efficiency of 46–86%. The simple chitosan nanoparticles (F2) were more spherical in comparison to other formulations (F4–F6), while the roughness of hyaluronic acid (F5) and leucine (F6) added formulations was significantly high er than F2 and Tween 80 added formulation (F4). The DSC and FTIR analysis depict that the physical and chemical properties of the drug were preserved. The release of the drugs from nanoparticles was more sustained in the case of F5 and F6 when compared to F2 and F4 due to the additional coating of hyaluronic acid and leucine. The nanoparticles were amorphous and cohesive and prone to exhalation due to their small size. Therefore, nanoparticles were admixed with lactose microspheres to reduce particle agglomeration and improve powder dispersion from a dry powder inhaler (DPI). The DPI formulations achieved a dispersed fraction of 75 to 90%, a mass median aerodynamic diameter (MMAD) of 1–2 µm and a fine particle fraction (FPF) of 28–83% when evaluated using the Anderson cascade impactor from Handihaler®. Overall, the montelukast-loaded nanoparticles physically admixed with lactose microspheres achieved optimum deposition in the deep lung for potential application in asthmatic patients.
Collapse
Affiliation(s)
- Faqir Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| | | | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kamran Ahmad Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Raed F. Alserihi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| |
Collapse
|
13
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
14
|
Peng J, Cai Z, Wang Q, Zhou J, Xu J, Pan D, Chen T, Zhang G, Tao L, Chen Y, Shen X. Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration. Molecules 2022; 27:molecules27113610. [PMID: 35684546 PMCID: PMC9182538 DOI: 10.3390/molecules27113610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary emphysema is a fatal lung disease caused by the progressive thinning, enlargement and destruction of alveoli that is closely related to inflammation and oxidative stress. Oxymatrine (OMT), as a bioactive constituent of traditional Chinese herbal Sophora flavescens, has great potential to alleviate pulmonary emphysema via its anti-inflammatory and antioxidative activities. Pulmonary administration is the most preferable way for the treatment of lung diseases. To improve the in vivo stability and pulmonary retention of OMT, OMT-loaded liposome with carboxymethyl chitosan (CMCS) modification was developed. The CMCS was modified on the surface of OMT liposomes via electrostatic attraction and covalent conjugation to obtain Lipo/OMT@CMCS and CMCS-Lipo/OMT, respectively. A porcine pancreatic elastase (PPE)-induced emphysema mice model was established to evaluate the alleviation effects of OMT on alveolar expansion and destruction. CMCS-modified liposomal OMT exhibited superior ameliorative effects on emphysema regardless of the preparation methods, and higher sedimentation and longer retention in the lung were observed in the CMCS-Lipo group. The mechanisms of OMT on emphysema were related to the downregulation of inflammatory cytokines and the rebalancing of antioxidant/oxidation via the Nrf2/HO-1 and NF-κB/IκB-α signaling pathways, leading to reduced cell apoptosis. Moreover, the OMT liposomal preparations further enhanced its anti-inflammatory and antioxidative effects. In conclusion, pulmonary administration of OMT is a potential strategy for the treatment of emphysema and the therapeutic effects can be further improved by CMCS-modified liposomes.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Zimin Cai
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jinzhuan Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Tingting Chen
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China;
| | - Guangqiong Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| |
Collapse
|
15
|
Papagiannopoulos A, Sotiropoulos K. Current Advances of Polysaccharide-Based Nanogels and Microgels in Food and Biomedical Sciences. Polymers (Basel) 2022; 14:polym14040813. [PMID: 35215726 PMCID: PMC8963082 DOI: 10.3390/polym14040813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are natural polymers with hydrophilic, biocompatible and biodegradable characteristics and have many opportunities in the food and pharmaceutical sectors. This review focuses on the field of nano and microstructures whose internal structure is based on networked polysaccharide chains in 3D i.e., polysaccharide nanogels (NGs) and microgels (MGs). As it is observed the number of articles on NGs and MGs in peer reviewed scientific journals has been increasing over the last two decades. At the same time, the relative contribution of polysaccharides in this field is gaining place. This review focuses on the different applied methods for the fabrication of a variety of polysaccharide-based NGs and MGs and aims to highlight the recent advances on the subject and present their potentials and properties with regards to their integration in aspects of medicinal and food sciences. The presentation of the recent advances in the application of polysaccharide NGs and MGs is divided in materials with potential as emulsion stabilizers and materials with potential as carriers of bioactives. For applications in the medical sector the division is based on the fabrication processes and includes self-assembled, electrostatically complexed/ionically crosslinked and chemically crosslinked NGs and MGs. It is concluded that many advances are expected in the application of these polysaccharide-based materials and in particular as nutrient-loaded emulsion stabilizers, viscosity modifiers and co-assembled structures in combination with proteins.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence:
| | | |
Collapse
|