1
|
Wei Y, Shao J, Wei K, Peng L, Wei X. Influence of Qingzhuan Tea Polysaccharides on F - Adsorption: Molecular Structure, Binding Behavior, and In Vitro and In Vivo Digestion and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26384-26403. [PMID: 39545705 DOI: 10.1021/acs.jafc.4c05734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The high level of fluoride in Qingzhuan tea (QZT) poses a potential health risk to consumers. This study aims to explore the binding behavior of purified Qingzhuan tea polysaccharides (pTPS) and fluoride ions (F-), as well as their regulatory role in the digestion and metabolism of fluoride. The sugar content of pTPS was 94.64 ± 3.01%, with a molecular weight of 7.373 × 104 Da and high homogeneity. The effects of different proportions and environmental conditions on the adsorption of F- by pTPS were investigated. The influence of the complexation of pTPS and F- on the digestion and metabolism of fluoride was explored using an in vitro gastrointestinal digestion model and C57BL/6 mice. The structural alterations of pTPS were observed during simulated gastrointestinal digestion. Furthermore, pTPS were found to reduce serum fluoride levels and inhibit accumulation in major organs and tissues, especially the heart, liver, kidneys, muscles, and femur. This study investigated the binding pattern between fluorine and pTPS and its influence on the digestion and absorption of fluorine, providing a promising potential for pTPS as a bioadsorbent of fluorine to alleviate the toxicity of fluorine in QZT, which laid a theoretical foundation for the safety of consumption of QZT.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
3
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Huang R, Yu H. Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: a review. Int J Biol Macromol 2024; 277:134150. [PMID: 39059531 DOI: 10.1016/j.ijbiomac.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tea polysaccharides (TPS) have attracted much attention due to their multiple biological activities, excellent biocompatibility and good biodegradability, creating a wide range of potential applications in the food and pharmaceutical industries. However, the high molecular weight and complexity of TPS components have restricted its purification and bioactivity, limiting its potential applications. In this review, the effects of various extraction methods, tea processing, and degree of fermentation on the composition and structure of TPS were thoroughly investigated to overcome this dilemma. Through a comprehensive analysis of in vivo and in vitro studies, the health benefits of TPS are discussed in detail, including antioxidant, anti-obesity, modulation of gut microbial communities, and anticancer bioactivities. Typical structural characterization techniques of TPS are also summarized, and interactions with common food components are discussed in depth, providing a deeper perspective on the overall knowledge of TPS. Finally, this review offers an extensive overview of the wide range of applications of TPS, including its strong emulsifying properties and bio-accessibility, in various fields such as food nutrition, drug delivery, encapsulation films, and emulsifiers. This review aims to provide a theoretical basis for the profound development of TPS for productive utilization.
Collapse
Affiliation(s)
- Rong Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai 200030, China.
| | - Hongfei Yu
- North Ring Road no.1, Xinyang Agriculture and Forestry University, Pingqiao, Xinyang, He'nan, China
| |
Collapse
|
6
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Ji W, Qian C, Su X, Li X, Zhang Z, Ma Y, Zhang M, Li D. Structure characterization and protective effect against UVB irradiation of polysaccharides isolated from the plateau plant Gentiana dahurica Fisch. Int J Biol Macromol 2024; 267:131551. [PMID: 38621566 DOI: 10.1016/j.ijbiomac.2024.131551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 → 4)-α-GalpA-(6-OMe)-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.
Collapse
Affiliation(s)
- Wen Ji
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Cuiyin Qian
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiaopeng Su
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiang Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Life Sciences, Qinghai Normal University, Xining 810008, PR China.
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| |
Collapse
|
8
|
Wu DT, Geng JL, Li J, Deng W, Zhang Y, Hu YC, Zou L, Xia Y, Zhuang QG, Liu HY, Gan RY. Efficient extraction of pectic polysaccharides from thinned unripe kiwifruits by deep eutectic solvent-based methods: Chemical structures and bioactivities. Food Chem X 2024; 21:101083. [PMID: 38187948 PMCID: PMC10770586 DOI: 10.1016/j.fochx.2023.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
To promote the potentially industrial applications of thinned unripe kiwifruits, two deep eutectic solvent-based methods, including deep eutectic solvent-assisted extraction (DAE) and microwave-assisted deep eutectic solvent extraction (MDE), were optimized for the extraction of polysaccharides from thinned unripe kiwifruits (YKP). Results showed that the yields of YKP-D prepared by DAE and YKP-DM prepared by MDE were extremely higher than YKP-H prepared by hot water extraction. Furthermore, YKP-H, YKP-D, and YKP-DM were mainly composed of pectic polysaccharides, including homogalacturonan (HG) and rhamnogalacturonan I (RG I) domains. Besides, both YKP-D and YKP-DM exhibited stronger antioxidant, anti-glycosylation, and immunomodulatory effects than those of YKP-H, and their higher contents of uronic acids and bound polyphenols as well as lower molecular weights could partially contribute to their bioactivities. Overall, these results revealed that the developed MDE method could be utilized as a promising method for highly efficient extraction of YKP with superior beneficial effects.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin-Lei Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yao Zhang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
9
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
10
|
Song Y, Lei J, Li J, Wang J, Hu JL, Zheng XQ, Hu YC, Zou L, Wu DT. Structural properties and biological activities of soluble dietary fibers rich in pectic-polysaccharides from different buckwheat green leaves. Int J Biol Macromol 2023; 253:126686. [PMID: 37666397 DOI: 10.1016/j.ijbiomac.2023.126686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Buckwheat green leaves are commonly consumed as functional tea materials due to their various beneficial effects. Although buckwheat green leaves have abundant soluble dietary fibers (SDFs), the information about their structural properties and functional properties remains unknown, largely hindering their applications as functional/health products. Hence, to enhance the usage and application of SDFs from buckwheat green leaves as value-added health products, the structures and biological activities of SDFs derived from different buckwheat green leaves were investigated and compared. Results revealed that SDFs derived from Tartary buckwheat green leaves (TBSDF) and common buckwheat green leaves (CBSDF) were rich in complex pectic-polysaccharides, mainly composing of homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains. Besides, TBSDF had higher proportion of RG I pectic domains than that of CBSDF. Furthermore, the existence of a high content of complex pectic-polysaccharides in TBSDF and CBSDF could contribute to their various biological activities, such as antioxidant, antiglycation, fat/bile acid binding, anticancer, and prebiotic effects. These results can provide some new insights into further development of buckwheat green leaves and related SDFs as value-added health products.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Lei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ju-Li Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao-Qin Zheng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
11
|
Yuan S, Wang J, Li X, Zhu X, Zhang Z, Li D. Study on the structure, antioxidant activity and degradation pattern of polysaccharides isolated from lotus seedpod. Carbohydr Polym 2023; 316:121065. [PMID: 37321745 DOI: 10.1016/j.carbpol.2023.121065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
The lotus (Nelumbo nucifera Gaertn.) is the largest aquatic vegetable in Asia. The lotus seedpod (LS) is an inedible part of the mature flower receptacle of the lotus plant. However, the polysaccharide isolated from the receptacle has been less studied. The purification of LS resulted in two polysaccharides (LSP-1 and LSP-2). Both polysaccharides were found to be medium-sized HG pectin, with a Mw of 74 kDa. Their structures were elucidated via GC-MS and NMR spectrum and proposed as the repeating sugar units of GalA connected via α-1,4-glycosidic linkage, with LSP-1 having a higher degree of esterification. They have certain content of antioxidant and immunomodulatory activities. The esterification of HG pectin would have an adverse effect on these activities. Furthermore, the degradation pattern and kinetics of LSPs by pectinase conformed to the Michaelis-Menten model. There is a large amount of LS, resulting from the by-product of locus seed production, and thus a promising source for the isolation of the polysaccharide. The findings of the structure, bioactivities, and degradation property provide the chemical basis for their applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shuwei Yuan
- Pharmacy Department, Children's Hospital of Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| | - Jiahui Wang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiang Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xun Zhu
- Jiangsu R&D Center of the Intelligent Agricultural Equipment, Yancheng Polytechnic College, Yancheng 224005, PR China.
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, PR China.
| |
Collapse
|
12
|
Wang M, Zhang C, Xu Y, Ma M, Yao T, Sui Z. Impact of Six Extraction Methods on Molecular Composition and Antioxidant Activity of Polysaccharides from Young Hulless Barley Leaves. Foods 2023; 12:3381. [PMID: 37761090 PMCID: PMC10527962 DOI: 10.3390/foods12183381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Young hulless barley leaves are gaining recognition for potential health benefits, and the method of extracting polysaccharides from them is critical for potential food industry applications. This study delves into a comparative analysis of six distinct fiber extraction techniques: hot water extraction; high-pressure steam extraction; alkaline extraction; xylanase extraction; cellulase extraction; and combined xylanase and cellulase extraction. This analysis included a thorough comparison of polysaccharide-monosaccharide composition, structural properties, antioxidant activities (DPPH, ABTS, and FRAP), and rheological properties among fibers extracted using these methods. The results underscore that the combined enzymatic extraction method yielded the highest extraction yield (22.63%), while the rest of the methods yielded reasonable yields (~20%), except for hot water extraction (4.11%). Monosaccharide composition exhibited divergence across methods; alkaline extraction yielded a high abundance of xylose residues, whereas the three enzymatic methods demonstrated elevated galactose components. The extracted crude polysaccharides exhibited relatively low molecular weights, ranging from 5.919 × 104 Da to 3.773 × 105 Da across different extraction methods. Regarding antioxidant activities, alkaline extraction yielded the highest value in the ABTS assay, whereas enzymatically extracted polysaccharides, despite higher yield, demonstrated lower antioxidant capacity. In addition, enzymatically extracted polysaccharides exerted stronger shear thinning behavior and higher initial viscosity.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.W.); (C.Z.); (Y.X.); (M.M.)
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.W.); (C.Z.); (Y.X.); (M.M.)
| | - Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.W.); (C.Z.); (Y.X.); (M.M.)
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.W.); (C.Z.); (Y.X.); (M.M.)
| | - Tianming Yao
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.W.); (C.Z.); (Y.X.); (M.M.)
| |
Collapse
|
13
|
Yu Y, Xia Y, Sun N, Tian Y, Chen X, Fan L, Zhao C, Xia C, Yang A, Liu H. Extraction and Purification, Structural Characterization and Biological Activity of a Polysaccharide, PRP-1, from Plumeria rubra. Chem Biodivers 2023; 20:e202300866. [PMID: 37537695 DOI: 10.1002/cbdv.202300866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Polysaccharides derived from the flowers of Plumeria rubra (PRP) have shown a variety of beneficial effects on improving human health. However, the structural features and bioactivities of PRP remain unclear. A novel neutral polysaccharide (named PRP-1) with a molecular weight of 23 kDa was extracted and purified from the flowers of P. rubra. PRP-1 was consisted of arabinose, galactose, glucose, xylose and mannose, with a molar ratio of 1.49: 27.89: 50.24: 13.02: 7.36. The structural characterization based on the methylation and 1D/2D nuclear magnetic resonance analyses indicated that PRP-1 was composed of →4)-Glcp-(1→, →4,6)-Glcp-(1→, →4)-Galp-(1→, →2)-Galp-(1→, t-Gal(p), →4)-Manp-(1→, →4,6)-Manp-(1→, t-Man(p), →2)-Xylp-(1→, and t-Xyl(p). Scanning electron microscopy revealed that PRP-1 possess a compact three-dimensional curling network structure in the terms of morphology. PRP-1 exhibited anti-inflammatory activity, which have moderate inhibitory effects on TNF-α and IL-6 production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. In addition, PRP-1 showed ABTS, OH radicals scavenging and the Fe2+ chelating effects in a concentration dependent manner. In α-glucosidase inhibition assay, PRP-1 did not exhibit inhibitory activity. Overall, these results provide a scientific basis for the utilization of the flowers of P. rubra as a potential functional food ingredient.
Collapse
Affiliation(s)
- Yongshi Yu
- School of Food Science and Engineering, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Yingchi Xia
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Ningyun Sun
- School of Food Science and Engineering, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Yamei Tian
- School of Food Science and Engineering, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Xin Chen
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Lixia Fan
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Chaochao Zhao
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, No.11 Renmin West Road, Chancheng District, Foshan, China
| | - Anping Yang
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| | - Hui Liu
- School of Food Science and Engineering, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
- School of Medicine, Foshan University, No.33 Guangyun Road, Nanhai District, Foshan, China
| |
Collapse
|
14
|
Wu D, Wan J, Li W, Li J, Guo W, Zheng X, Gan RY, Hu Y, Zou L. Comparison of Soluble Dietary Fibers Extracted from Ten Traditional Legumes: Physicochemical Properties and Biological Functions. Foods 2023; 12:2352. [PMID: 37372563 DOI: 10.3390/foods12122352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Soluble dietary fibers (SDFs) exist as the major bioactive components in legumes, which exhibit various biological functions. To improve the potential applications of legume SDFs as healthy value-added products in the functional food industry, the physicochemical properties and biological functions of SDFs from ten selected traditional legumes, including mung bean, adzuki bean, red bean, red sword bean, black bean, red kidney bean, speckled kidney bean, common bean, white hyacinth bean, and pea, were studied and compared. Results showed that the physicochemical properties of SDFs varied in different species of legumes. All legume SDFs almost consisted of complex polysaccharides, which were rich in pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) domains. In addition, hemicelluloses, such as arabinoxylan, xyloglucan, and galactomannan, existed in almost all legume SDFs, and a large number of galactomannans existed in SDFs from black beans. Furthermore, all legume SDFs exhibited potential antioxidant, antiglycation, immunostimulatory, and prebiotic effects, and their biological functions differed relative to their chemical structures. The findings can help reveal the physicochemical and biological properties of different legume SDFs, which can also provide some insights into the further development of legume SDFs as functional food ingredients.
Collapse
Affiliation(s)
- Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiajia Wan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenxing Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wang Guo
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Liu Y, Lei S, Hou R, Li D, Wan X, Cai H, Chen G. Tea polysaccharides from Taiping Houkui may serve as a potential candidate for regulation of lipid metabolism: Roles of gut microbiota and metabolite in vitro. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
16
|
Hu YC, Hu JL, Li J, Wang J, Zhang XY, Wu XY, Li X, Guo ZB, Zou L, Wu DT. Physicochemical characteristics and biological activities of soluble dietary fibers isolated from the leaves of different quinoa cultivars. Food Res Int 2023; 163:112166. [PMID: 36596115 DOI: 10.1016/j.foodres.2022.112166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Quinoa leaf is consumed as a promising value-added vegetable in the diet. Although quinoa leaf is rich in soluble dietary fibers, the knowledge regarding their chemical structures and biological activities is still limited, which astricts their application in the functional food industry. Thus, to improve the precise use and application of soluble dietary fibers (SDFs) isolated from quinoa leaves in the food industry, the physicochemical structures and bioactivities of SDFs isolated from different quinoa leaves were systematically investigated. Results indicated that quinoa leaves were rich in SDFs, ranging from 3.30 % to 4.55 % (w/w). Quinoa SDFs were mainly composed of acidic polysaccharides, such as homogalacturonan and rhamnogalacturonan I, which had the molecular weights in the range of 4.228 × 104 -7.059 × 104 Da. Besides, quinoa SDFs exerted potential in vitro antioxidant activities, lipid and bile acid-adsorption capacities, immunoregulatory activities, and prebiotic effects, which might be partially associated with their molecular mass, content of uronic acid, and content of bound polyphenol. Collectively, these findings are beneficial to better understanding the chemical structures and bioactivities of SDFs extracted from different quinoa leaves, which can also provide a scientific basis for developing quinoa SDFs into functional foods in the food industry.
Collapse
Affiliation(s)
- Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ju-Li Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xian-Yue Zhang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao-Yong Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zhan-Bin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
17
|
Golovchenko V, Popov S, Smirnov V, Khlopin V, Vityazev F, Naranmandakh S, Dmitrenok AS, Shashkov AS. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int J Mol Sci 2022; 23:13175. [PMID: 36361966 PMCID: PMC9657462 DOI: 10.3390/ijms232113175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2023] Open
Abstract
The above-ground part of the Salsola passerine was found to contain ~13% (w/w) of polysaccharides extractable with water and aqueous solutions of ammonium oxalate and sodium carbonate. The fractions extracted with aqueous sodium carbonate solutions had the highest yield. The polysaccharides of majority fractions are characterized by similar monosaccharide composition; namely, galacturonic acid and arabinose residues are the principal components of their carbohydrate chains. The present study focused on the determination of antioxidant activity of the extracted polysaccharide fractions and elucidation of the structure of polysaccharides using nuclear magnetic resonance (NMR) spectroscopy. Homogalacturonan (HG), consisting of 1,4-linked residues of α-D-galactopyranosyluronic acid (GalpA), rhamnogalacturonan-I (RG-I), which contains a diglycosyl repeating unit with a strictly alternating sequence of 1,4-linked D-GalpA and 1,2-linked L-rhamnopyranose (Rhap) residues in the backbone, and arabinan, were identified as the structural units of the obtained polysaccharides. HMBC spectra showed that arabinan consisted of alternating regions formed by 3,5-substituted and 1,5-linked arabinofuranose residues, but there was no alternation of these residues in the arabinan structure. Polysaccharide fractions scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 0.2-1.8 mg/mL. The correlation analysis showed that the DPPH scavenging activity of polysaccharide fractions was associated with the content of phenolic compounds (PCs).
Collapse
Affiliation(s)
- Victoria Golovchenko
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Vasily Smirnov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Victor Khlopin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Wang H, Xu S, Li D, Xie Z. Structural Characterization and Macrophage Polarization-Modulating Activity of a Novel Polysaccharide from Large Yellow Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12565-12576. [PMID: 36154025 DOI: 10.1021/acs.jafc.2c05593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel homogeneous polysaccharide (LYP-S3) that promotes the M2 polarization of macrophages was obtained from large yellow tea by a bioactivity-guided sequential isolation procedure and activity evaluation in the present study. Structural characterization revealed that LYP-S3 has an average molecular weight of 28.6 kDa and is composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid at the molar ratio of 8.08:11.66:11.77:3.96:58.02. The main backbone of LYP-S3 consists of →4)-α-d-GalpA-6-OMe-(1→, β-d-GalpA-(1→, →4)-β-d-Galp-(→1, and →β-d-Galp-(1→, and the branches are composed of α-l-Araf-(→1, →5)-α-l-Araf-(1→, →2,4)-β-l-Rhap-(1→, →2)-β-l-Rhap-(1→, and →4)-β-d-Glcp-(1→. An in vitro bioactivity evaluation assay showed that LYP-S3 remarkably reduced the expression of M1 macrophage markers and increased the expression of M2 macrophage markers. In addition, LYP-S3 inhibited adipocyte differentiation and adipogenesis in 3T3-L1 adipocytes and blocked macrophage migration toward 3T3-L1 adipocytes in the cocultures of bone-marrow-derived monocytes and 3T3-L1 adipocytes. Furthermore, LYP-S3 promoted the M2 polarization of macrophages in cocultures. These findings suggested that LYP-S3 has a potential function in preventing inflammation and obesity.
Collapse
Affiliation(s)
- Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
19
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
20
|
Xu A, Zhao Y, Shi Y, Zuo X, Yang Y, Wang Y, Xu P. Effects of oxidation-based tea processing on the characteristics of the derived polysaccharide conjugates and their regulation of intestinal homeostasis in DSS-induced colitis mice. Int J Biol Macromol 2022; 214:402-413. [PMID: 35738342 DOI: 10.1016/j.ijbiomac.2022.06.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Different cultivars and processing technologies involved in producing tea result in the high heterogeneity of derived polysaccharide conjugates, which limits the understanding of their composition and structure, and biological activity. Here, raw tea leaves from the same cultivar were used to produce dried fresh tea leaves, green tea, and black tea, and three polysaccharide conjugates derived from dried fresh tea leaves (FTPS), green tea (GTPS), and black tea (BTPS) were prepared accordingly. Their physiochemical characteristics and bioactivities were investigated. The results showed that the oxidation during tea processing increased the phenolics and proteins while decreasing the GalA in the derived TPS conjugates; meanwhile, it reduced the molecular weight and particle size of BTPS but enhanced their antioxidant activity in vitro. Furthermore, all three TPS conjugates improved intestinal homeostasis by reducing TJ protein loss and inflammation and alleviated DSS-induced colitis symptoms in mice. In addition, the three TPS conjugates showed differential regulation of the intestinal microbiome and altered the produced SCFAs, which contributed to the prevention of colitis. Our findings suggest that TPS conjugates could be applied in colitis prevention in association with the regulation of gut microbiota, and their efficacy could be optimized by employing suitable tea processing technologies.
Collapse
Affiliation(s)
- Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yueling Zhao
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Zuo
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|