1
|
Zhao B, Liu J, Yuan X, Cheng X. Chitosan-BODIPY fluorescent composite materials for photodynamical antibacterial and therapy. Int J Biol Macromol 2025; 286:138256. [PMID: 39638191 DOI: 10.1016/j.ijbiomac.2024.138256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Chitosan-based fluorescent copolymers containing borodipyrromethene (BODIPY) were synthesized and investigated. In this work, fluorescent compound (BOD-4) containing -C ≡ CH was synthesized firstly. Subsequently, chitosan (CS)-based polymer CS-I was obtained through the -NH2/-C ≡ C click reaction between BOD-4 and CS. Thirdly, CS-Py was prepared via Suzuki reaction between CS-I and pyridine. Finally, the synthesis of macromolecular photosensitizers, i.e. CS-Me and CS-Bn, was achieved by pyridinium salt formation. CS-Me and CS-Bn could produce reactive oxygen species (ROS) when exposed to white light, demonstrating superior light utilization efficiency. This strategy not only utilizes the photodynamic ability of photosensitizing molecules but also takes advantage of chitosan's biocompatibility and antibacterial efficacy. The photodynamic antimicrobial activities of the macromolecular photosensitizers have been tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). CS-Me and CS-Bn exhibited not only the inherent antibacterial properties but also photodynamic capabilities, which significantly enhance their antibacterial effectiveness. Under white light irradiation, bacteria can be effectively eradicated. When made into a film by loading CS-Me and CS-Bn onto transparent band-aid, excellent photodynamic antibacterial properties were obtained. CS-based photosensitizers maintain the biocompatibility and antibacterial properties of CS. In addition, they expand the scope of chitosan's application in photodynamic therapy (PDT) as well.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xiaoxia Yuan
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
2
|
Qiu C, Liu H, Wang X, Tao S, Mo J, Chen P, Xiao H, Qi H. Cellulose-based fluorescent chemosensor with controllable sensitivity for Fe 3+ detection. Carbohydr Polym 2024; 346:122620. [PMID: 39245528 DOI: 10.1016/j.carbpol.2024.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Polymer-based sensors, particularly those derived from renewable polymers, are gaining attention for their superior properties compared to organic small molecules. However, their complex preparation and poor, uncontrollable sensitivity have hindered further development. Herein, cellulose-based polymer photoluminescence (PL) chemosensors were fabricated using a straightforward and adjustable strategy. Specifically, water-soluble cellulose acetoacetate (CAA) was used as the substance for the in-situ synthesis of 1,4-dihydropyridine (DHPs) fluorescent rings on cellulose chains via a catalyst-free, room-temperature Hantzsch reaction. Benefiting from the synergetic through-space conjugation of DHPs rings and semi-rigid cellulose chains with heteroatoms, the sensors exhibit bright and stable PL properties. Based on this performance, the cellulose-based sensor excels in the specific recognition of Fe3+ in aqueous systems, showing exceptional selectivity, stability, and anti-interference performance due to the synergy between the inner filter effect (IFE) and intramolecular charge transfer (ICT). Theoretical calculations confirm the role of the extended π-conjugated structure at the DHPs-4 position in modulating the sensor sensitivity, achieving a low limit of detection (LOD) of 0.48 μM. Furthermore, the versatility of the Hantzsch reaction shows the potential of this strategy for developing a new generation of biomass-based polymer portable sensors for real-time and on-site detection.
Collapse
Affiliation(s)
- Changjing Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Xijun Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shenming Tao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jilong Mo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Pinhong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - He Xiao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
4
|
Al-Ahmary KM, Al-Mhyawi SR, Khan S, Alrashdi KS, Shafie A, Babalghith AO, Ashour AA, Alshareef TH, Moglad E. Medicinal and chemosensing applications of chitosan based material: A review. Int J Biol Macromol 2024; 268:131493. [PMID: 38608983 DOI: 10.1016/j.ijbiomac.2024.131493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Chitosan (CTS), has emerged as a highly intriguing biopolymer with widespread applications, drawing significant attention in various fields ranging from medicinal to chemosensing. Key characteristics of chitosan include solubility, biocompatibility, biodegradability and reactivity, making it versatile in numerous sectors. Several derivatives have been documented for their diverse therapeutic properties, such as antibacterial, antifungal, anti-diabetic, anti-inflammatory, anticancer and antioxidant activities. Furthermore, these compounds serve as highly sensitive and selective chemosensor for the detection of various analytes such as heavy metal ions, anions and various other species in agricultural, environmental and biological matrixes. CTS derivatives interacting with these species and give analytical signals. In this review, we embark on an exploration of the latest advancements in CTS-based materials, emphasizing their noteworthy contributions to medicinal chemistry spanning the years from 2021 to 2023. The intrinsic biological and physiological properties of CTS make it an ideal platform for designing materials that interact seamlessly with biological systems. The review also explores the utilization of chitosan-based materials for the development of colorimetric and fluorimetric chemosensors capable of detecting metal ions, anions and various other species, contributing to advancements in environmental monitoring, healthcare diagnostics, and industrial processes.
Collapse
Affiliation(s)
| | - Saedah R Al-Mhyawi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Kamelah S Alrashdi
- Department of Chemistry, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 1109, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tasneem H Alshareef
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, Saudi Arabia
| |
Collapse
|
5
|
Ma Y, Cheng X. Readily soluble cellulose-based fluorescent probes for the detection and removal of Fe 3+ ion. Int J Biol Macromol 2023; 253:127393. [PMID: 37827404 DOI: 10.1016/j.ijbiomac.2023.127393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cellulose is an economical, biodegradable, widely available, and eco-friendly natural macromolecule. But its utilization has been restricted due to its insolubility in water and common organic solvents. In this work, soluble fluorescent probes based on cellulose were synthesized. Firstly, the primary hydroxyl group in glucose units was reacted with SOCl2 to introduce Cl and obtain chloro-cellulose (Cell-Cl). This operation breaks down the regular structure and hydrogen bonding of the original cellulose, enabling it to dissolve in DMSO. Secondly, the Cell-Cl reacted with CS2 and 2-mercaptobenzothiazole to obtain a cellulose-based macromolecular RAFT reagent (Cell-CTA). Finally, the fluorescent monomers which bears -C=C- and naphthalimide, and methacrylic acid (MAA) were grafted onto the main chain of cellulose through RAFT polymerization. Thus, cellulose-based readily soluble macromolecular fluorescent probes were obtained. The cellulose-based probes can specifically recognize Fe3+ in pure water and can be recycled and regenerated. Additionally, the cellulose-based probes exhibit remarkable adsorption and separation properties for Fe3+ ions. The modification of cellulose decreases its crystallinity and introduces hydrophilic groups and fluorophores, which enables cellulose to be soluble in both pure water and the organic solvent DMSO. This work expands the application range of cellulose-based copolymers.
Collapse
Affiliation(s)
- Yanqin Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
6
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
7
|
Mostafa AG, Gaith EA, Akl MA. Aminothiol supported dialdehyde cellulose for efficient and selective removal of Hg(II) from aquatic solutions. Sci Rep 2023; 13:19507. [PMID: 37945624 PMCID: PMC10636137 DOI: 10.1038/s41598-023-46082-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The increasingly serious problem of mercury pollution has caused wide concern, and exploring adsorbent materials with high adsorption capacity is a simple and effective approach to address this concern. In the recent study, dialdehyde cellulose (DAC), cyanoacetohydrazide (CAH), and carbon disulfide (CS2) are used as raw materials for the (DAC@CAH@SK2) preparation material through the three-steps method. By utilizing the following characterization techniques; thermogravimetric analysis (TGA), N2 adsorption-desorption isotherm (BET), elemental analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), 1HNMR and Energy Dispersive X-ray Spectroscopy (EDS) of DAC@CAH@SK2 composite. The point of zero charge (pHPZC) for the prepared DAC@CAH@SK2 also was examined. From the batch experiments, the optimum conditions were found to be pH (5-8), an Hg2+ concentration of 150 mg/L, a DAC@CAH@SK2 dose of 0.01 g, and a contact time of 180 min with a maximum adsorption quantity of 139.6 mg/g. The process of Hg2+ adsorption on the DAC@CAH@SK2 material was spontaneous exothermic, monolayer chemisorption, and well-fitted to Langmuir and pseudo-2nd-order models. The DAC@CAH@SK2 selectivity towards the Hg2+ was examined by investigating the interfering metal ions effect. The DAC@CAH@SK2 was successfully applied for the Hg2+ removal from synthetic effluents and real wastewater samples with a recovery % exceeding 95%. The prepared DAC@CAH@SK2 was regenerated using a mixture of EDTA and thiourea. Also, FT-IR analysis indicates that the synergistic complexation of N and S atoms on DAC@CAH@SK2 with Hg(II) is an essential factor leading to the high adsorption capacity.
Collapse
Affiliation(s)
- Aya G Mostafa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eslam A Gaith
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Musikavanhu B, Zhu D, Tang M, Xue Z, Wang S, Zhao L. A naphthol hydrazone Schiff base bearing benzothiadiazole unit for fluorescent detection of Fe 3+ in PC3 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122242. [PMID: 36542920 DOI: 10.1016/j.saa.2022.122242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Naphthol hydrazone derivatives are recognized as efficient chelating agents for both qualitative and quantitative detection of metal ions. Here we design a naphthol hydrazine-based chemosensor with covalently linking a strong electron-withdrawing benzothiadiazole group to modulate the molecular electronic structure, nominated as NtHzBtd. The fluorescent probe performs excellent selectivity and sensitivity towards Fe3+ with 1:1 binding stoichiometry, while exhibiting a quick response at 55 s with a relatively low limit of detection of 0.036 µM. A series of spectroscopic measurements in tandem with theoretical calculations suggest that the probe undergoes both intramolecular charge transfer (ICT) and chelation enhanced quenching (CHEQ) processes. Successful color rendering of paper strips and bioimaging in PC3 cells demonstrate the promising applicability of NtHzBtd for portable Fe3+ detection in real samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Mengran Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Wu Y, Meng Z, Zhao F, Wang S, Wang Z, Yang Y. An efficient ethylcellulose fluorescent probe for rapid detection of Fe 3+ and its multi-functional applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121767. [PMID: 36041263 DOI: 10.1016/j.saa.2022.121767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fe3+ is the most abundant essential transition metal ion in the human body, plays a vital role in biological and environmental systems. Ethyl cellulose is one of the derivatives of cellulose. Herein, a novel ethylcellulose fluorescent probe EC-HPCB for detecting Fe3+ was prepared by grafting a flavonol derivative as both fluorophore and selective recognition group. The probe exhibited a highly specific "turn-off" fluorescence response to Fe3+, and the fluorescence color changed from yellow to colorless in the presence of Fe3+. The detection limit of EC-HPCB for Fe3+ was 2.65 × 10-7 mol/L, and the response time was as quick as 2 min. The detection mechanism was confirmed by 1H NMR and DFT calculations. Based on the good solubility and processability in organic solvent, EC-HPCB was made into coating and film with favorable fluorescent performances. Furthermore, EC-HPCB probe was successfully applied to monitor Fe3+ in real water samples, and the EC-HPCB-loaded filter paper provided a solid-state platform for detecting Fe3+ by naked eye and fluorescence method.
Collapse
Affiliation(s)
- Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Cibotaru S, Ailincai D, Andreica BI, Cheng X, Marin L. TEGylated Phenothiazine-Imine-Chitosan Materials as a Promising Framework for Mercury Recovery. Gels 2022; 8:692. [PMID: 36354600 PMCID: PMC9689029 DOI: 10.3390/gels8110692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023] Open
Abstract
This paper reports new solid materials based on TEGylated phenothiazine and chitosan, with a high capacity to recover mercury ions from aqueous solutions. They were prepared by hydrogelation of chitosan with a formyl derivative of TEGylated phenothiazine, followed by lyophilization. Their structural and supramolecular characterization was carried out by 1H-NMR and FTIR spectroscopy, as well as X-ray diffraction and polarized light microscopy. Their morphology was investigated by scanning electron microscopy and their photophysical behaviour was examined by UV/Vis and emission spectroscopy. Swelling evaluation in different aqueous media indicated the key role played by the supramolecular organization for their hydrolytic stability. Mercury recovery experiments and the analysis of the resulting materials by X-ray diffraction and FTIR spectroscopy showed a high ability of the studied materials to bind mercury ions by coordination with the sulfur atom of phenothiazine, imine linkage, and amine units of chitosan.
Collapse
Affiliation(s)
- Sandu Cibotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Bianca-Iustina Andreica
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
11
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|
12
|
Sivakumar K, Chaitanya GK. α- Cyclodextrin based Chemosensors: A Review. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- K. Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| | - G. Krishna Chaitanya
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| |
Collapse
|
13
|
Chen H, Li X, Gao P, Pan Y, Liu J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Facile method to synthesize fluorescent chitosan hydrogels for selective detection and adsorption of Hg 2+/Hg . Carbohydr Polym 2022; 288:119417. [PMID: 35450660 DOI: 10.1016/j.carbpol.2022.119417] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
Abstract
Fluorescent chitosan-based hydrogel for the selective detection and adsorption of Hg2+/Hg+ in aqueous environment was prepared through three-step synthesis strategy. NO2-Boron-dipyrrolemethene (BODIPY) was prepared firstly, and then the -NO2 group was reduced to -NH2 group. Finally, the NH2-BODIPY was introduced to chitosan by Schiff base formation reaction through bi-aldehyde. Eventually, fluorescent chitosan hydrogel was obtained. The as-prepared fluorescent hydrogel probe could detect Hg2+/Hg+ through PET mechanism with the detection limit of 0.3 μM. The recognition site which combines Hg2+/Hg+ is CN, it is just formed in the reaction with chitosan and the amino group on BODIPY. Adsorption capacity of the fluorescent hydrogel is 121 mg·g-1, which is almost seven times of the original chitosan. The isotherm and kinetics of Hg2+/Hg+ removal follows Langmuir isotherm and pseudo-second order kinetics, respectively. Besides, a series of fluorescent hydrogels were prepared to compare the elasticity, hydropHilicity, fluorescence intensity and adsorption capacity.
Collapse
|
15
|
Wang D, Marin L, Cheng X. Chitosan-bodipy macromolecular fluorescent probes prepared by click reactions for highly sensitive and selective recognition of 2,4-dinitrophenylhydrazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj03923k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitosan-based probes were prepared and they could identify 2,4-dinitrophenylhydrazine (DNH). CC bonds formed in a click reaction act as recognizing sites for DNH.
Collapse
Affiliation(s)
- Die Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| | - Luminita Marin
- “Petru Poni’’ Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| |
Collapse
|
16
|
Singh G, Devi A, Mohit, Diksha, Suman, Saini A, Kaur JD, Gupta S, Vikas. Synthesis, “turn-on” fluorescence signals towards Zn 2+ and Hg 2+ and monoamine oxidase A inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03767j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new set of morpholine analogue Schiff base linked organosilanes (5a–5c) was prepared.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anita Devi
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Mohit
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Diksha
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Suman
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anamika Saini
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Sofia Gupta
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Vikas
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|