1
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Liu Y, Wan H, Niu J, Zhao M, Shang W, Li P, Li J, Zhang Y, Wu Z, Zhao Y. 3D printing for constructing biocarriers using sodium alginate/ε-poly-l-lysine ink: Enhancing microbial enrichment for efficient nitrogen removal in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175296. [PMID: 39111417 DOI: 10.1016/j.scitotenv.2024.175296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
The microbial enrichment of traditional biocarriers is limited due to the inadequate consideration of spatial structure and surface charging characteristics. Here, capitalizing on the ability of 3D printing technology to fabricate high-resolution materials, we further designed a positively charged sodium alginate/ε-poly-l-lysine (SA/ε-PL) printing ink, and the 3D printed biocarriers with ideal pore structure and rich positive charge were constructed to enhance the microbial enrichment. The rheological and mechanical tests confirmed that the developed SA/ε-PL ink could simultaneously satisfy the smooth extrusion for printing process and the maintenance of 3D structure. The utilization of the ε-PL secondary cross-linking strategy reinforced the 3D mechanical structure and imparted the requisite physical properties for its application as a biocarrier. Compared with traditional sponge carriers, 3D printed biocarrier had a faster initial attachment rate and a higher biomass of 14.58 ± 1.18 VS/cm3, and the nitrogen removal efficiency increased by 53.9 %. Besides, due to the superior electrochemical properties and biocompatibility, the 3D printed biocarriers effectively enriched the electroactive denitrifying bacteria genus Trichococcus, thus supporting its excellent denitrification performance. This study provided novel insights into the development of new functional biocarriers in the wastewater treatment, thereby providing scientific guidance for practical engineering.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Wei Shang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Pengfeng Li
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Jiaju Li
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Yue Zhang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Zuodong Wu
- Tianjin Water Engineering Co., Ltd, Tianjin 300222, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Dong D, Cheng Z, Zhang J, Gu Z, Han Z, Hou W, Lv X. Using polycaprolactone and sodium alginate to prepare self-pumping/super-absorbent/transportable drug dressings for stage 3-4 pressure ulcer treatment. Int J Biol Macromol 2024; 278:134711. [PMID: 39151847 DOI: 10.1016/j.ijbiomac.2024.134711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Pressure ulcer dressings with different functions can enhance wound healing ability to varying degrees; however, pressure ulcer dressings that integrate various functions and break the resistance of bacteria to traditional antibiotics have not been widely studied. We proposed a self-pumping/super-absorbent/transportable drug dressing (PLD-SLD), polycaprolactone (PCL)/sodium alginate (SA) was used to load platelet-derived growth factor (PDGF) and lidocaine hydrochloride (LID) by Janus electrospinning and self-assembly technology, and Ɛ-polylysine was used as a biological bacteriostatic agent to prepare a multi-layer dressing. SEM showed that the dressing had a fluffy structure. The dressing can pump the exudate to the SA layer away from the skin. The swelling ratio reached 1378.667 ± 44.752 %. Coagulate blood in 5 min. On the 8th day, the unclosed area rate of the PLD-SLD dressing group was 16.112 ± 0.088 % lower than that of the model group. Importantly, the dressing can induce the expression of CD31, VEGF, α-SMA, and reduce the expression of CD68, thereby giving priority to wound healing. There was no scar formation after healing. In this study, a new dressing preparation method was proposed for the problems of exudate management, infection control, pain relief and healing promotion of stage 3-4 pressure ulcer healing.
Collapse
Affiliation(s)
- Dongxing Dong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, People's Republic of China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, People's Republic of China.
| | - Jingjing Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, People's Republic of China
| | - Zhengyi Gu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Zhaolian Han
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, People's Republic of China
| | - Wenli Hou
- Department of Cadre Ward, the First Hospital of Jilin University, 71 Xinmin Street, Chaoyang, Changchun 130021, People's Republic of China.
| | - Xiaoli Lv
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, People's Republic of China
| |
Collapse
|
4
|
Chao C, Niu J, Liu Y, Zhao M, Wan H, Zhai S, Wang Q, Wu Y, Zhao Y. 3D-printed controllable bio-accelerators with sustained release property to boost chromium (VI) inhibited denitrification recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135928. [PMID: 39332254 DOI: 10.1016/j.jhazmat.2024.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Although soluble bio-accelerators have proven effective in mitigating Cr(VI) inhibition within denitrification system, issues persist in immobilizing bio-accelerators and making them slow-release for sustained regulation. In this study, a novel strategy was proposed to fabricate immobilized bio-accelerators with controlled structure, sustained release property by 3D printing technology. Notably, the sustained release of bio-accelerators from 3D-printed bio-accelerators (3DP-B) lasted for at least 144 h. Compared to control group, 3DP-B with basic components (3DP-BB) shortened the recovery time by 1.4 folds, and the COD and NO3--N removal efficiency was 36.5 % and 38.0 % higher than that of natural recovery. Correspondingly, the activity of key enzymes (nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase), electron transfer system activity and extracellular polymer substances of denitrification biofilm maintained at relatively high levels. Furthermore, introducing 60 mg·L-1 anthraquinone-2,6-disulfonate (AQDS) into the ink showed noticeable superiority on the bio-inhibition release over 1000 mg·L-1 AQDS. The released AQDS facilitated the electron transport capacity by 1.25 times compared with control group. The groundbreaking findings of this study could advance the development of 3D printing technology and utilization of bio-accelerators in the field of wastewater treatment.
Collapse
Affiliation(s)
- Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- Power China Zhongnan Engineering Corporation Limited, Changsha 410019, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Hasan Aneem T, Sarker M, Wong SY, Lim S, Li X, Rashed A, Chakravarty S, Arafat MT. Antimicrobial peptide immobilization on catechol-functionalized PCL/alginate wet-spun fibers to combat surgical site infection. J Mater Chem B 2024. [PMID: 38958038 DOI: 10.1039/d4tb00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities. In this study, naturally sourced AMPs were studied along with microfibers, fabricated by a novel wet-spinning method using sodium alginate and polycaprolactone. Afterward, fibers were functionalized by the catechol groups of dopamine immobilizing nucleophilic AMPs on the surface. Conjugation between PCL and alginate resulted in fibers with smooth surfaces improving their mechanical strength via hydrogen bonds. Having an average diameter of 220 μm, the mechanical properties of the fiber complied with USP standards for suture size 3-0. Engineered microfibers were able to hinder the growth of Proteus spp., a pathogenic bacterium for at least 60 hours whereas antibiotic ceftazidime failed. When subjected to a linear incisional wound model study, accelerated healing was observed when the wound was closed using the engineered fiber compared to Vicryl. The microfibers promoted faster re-epithelialization compared to Vicryl proving their higher wound healing capacity.
Collapse
Affiliation(s)
- Taufiq Hasan Aneem
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| | - Mridul Sarker
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Asif Rashed
- Department of Microbiology, Mugda Medical College, Dhaka-1214, Bangladesh
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka-1000, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| |
Collapse
|
6
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
7
|
Cui M, Li S, Ma X, Wang J, Wang X, Stott NE, Chen J, Zhu J, Chen J. Sustainable Janus lignin-based polyurethane biofoams with robust antibacterial activity and long-term biofilm resistance. Int J Biol Macromol 2024; 256:128088. [PMID: 37977464 DOI: 10.1016/j.ijbiomac.2023.128088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Conventional antibiotic therapies have been becoming less efficient due to increasingly, and sometimes fully, antibiotic-resistant bacterial strains, sometimes known as "superbacteria" or "superbugs." Thus, novel antibacterial materials to effectively inhibit or kill bacteria are crucial for humanity. As a broad-spectrum antimicrobial agent, silver nanoparticles (Ag NPs) have been the most widely commercialized of biomedical materials. However, long-term use of significant amounts of Ag NPs can be potentially harmful to human health through a condition known as argyria, in addition to being toxic to many environmental systems. It is, thus, highly necessary to reduce the amount of Ag NPs employed in medical treatments while also ensuring maintenance of antimicrobial properties, in addition to reducing the overall cost of treatment for humanitarian utilization. For this purpose, naturally sourced antimicrobial polylysine (PL) is used to partially replace Ag NPs within the materials composition. Accordingly, a series of PL, Ag NPs, and lignin-based polyurethane (LPU) composite biofoams (LPU-PL-Ag) were prepared. These proposed composite biofoams, containing at most only 2 % PL and 0.03 % Ag NPs, significantly inhibited the growth of both Gram-positive and Gram-negative bacteria within 1 h and caused irreversibly destructive bactericidal effects. Additionally, with a layer of polydimethylsiloxane (PDMS) on the surface, PDMS-LPU-PL(2 %)-Ag(0.03 %) can effectively prevent bacterial adhesion with a clearance rate of about 70 % for both bacterial biofilms within three days and a growth rate of more than 80 % for mouse fibroblasts NIH 3 T3. These lignin-based polyurethane biofoam dressings, with shorter antiseptic sterilization times and broad-spectrum antibacterial effects, are extremely advantageous for infected wound treatment and healing in clinical use.
Collapse
Affiliation(s)
- Minghui Cui
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuqi Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nathan E Stott
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital & Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
8
|
Zhao N, Yuan W. Antibacterial, conductive nanocomposite hydrogel based on dextran, carboxymethyl chitosan and chitosan oligosaccharide for diabetic wound therapy and health monitoring. Int J Biol Macromol 2023; 253:126625. [PMID: 37657577 DOI: 10.1016/j.ijbiomac.2023.126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Diabetic severe wound healing is challenging and also carries a high risk of bacterial infection and may be accompanied by serious complications. Electrical stimulation (ES) can effectively promote wound healing, but its effectiveness is often limited by incomplete contact between the electrodes and the wound site. In order to improve the efficiency of electrical stimulation utilization and to avoid wound infection, a multi-dynamically crosslinked nanocomposite hydrogel was prepared from dextran modified with aldehyde groups and phenylboronic acid esters (Dex-FA-BA), carboxymethyl chitosan (CMCS), polyaniline grafted chitosan oligosaccharide (CP), and Epigallocatechin Gallate/Ca2+ modified melanin-like nanoparticles (CEMNPs), based on dynamic Schiff base bonds, phenylboronic acid/diol interactions, and hydrogen bonding. The CEMNPs have good photothermal conversion properties and antioxidant activity and can also enhance the mechanical properties of the hydrogel system. The CP endows the hydrogel with good electrical conductivity and sensing properties and can record the respiratory and heart rate of rats in real time. Based on the convolutional neural networks (CNN) algorithm constructed by ResNet9, the respiratory and heart rate signals can be distinguished with 93.9 % accuracy. This multifunctional nanocomposite hydrogel can provide a new strategy to promote chronic wound healing and achieve health monitoring effectively.
Collapse
Affiliation(s)
- Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
9
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
10
|
Huang X, Hong M, Wang L, Meng Q, Ke Q, Kou X. Bioadhesive and antibacterial edible coating of EGCG-grafted pectin for improving the quality of grapes during storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Li C, Zhang Q, Lan D, Cai M, Liu Z, Dai F, Cheng L. ε-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties. Int J Biol Macromol 2022; 220:1049-1059. [PMID: 36027988 DOI: 10.1016/j.ijbiomac.2022.08.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Many complex diseases, such as bacterial infections, frequently accompany cutaneous wound healing, adding to the difficulty of clinical wound management. Consequently, in addition to displaying strong biocompatibility and actively promoting wound healing, an optimal wound dressing should also possess antimicrobial qualities to address issues with bacterial infection. This paper developed natural silk fiber (SF) membranes (also known as a flat silk cocoon (FSC)) with antimicrobial properties as a dressing for skin wounds. By changing the spinning tools and environment of silkworm larvae, a novel natural SF membrane with a cocoon structure and controllable size was prepared. The functional SF membranes were obtained via a hot press process and grafted with ε-Poly-l-lysine (EPL). The results showed that the SF membrane dressing was adjustable in size with a similar structure to the extracellular matrix (ECM), displaying inherent mechanical properties, excellent antimicrobial qualities, and biocompatibility. In vivo experiments using a full-thickness skin defect model indicated that EPL-modified SF membranes significantly promoted the rate of wound healing, exhibiting thicker granulation tissue and higher collagen disposition than commercial dressings (Tegaderm™ film). Therefore, the excellent mechanical qualities and cytocompatibility of the antimicrobial EPL-modified SF membranes substantially promote their potential application as a chronic wound dressing.
Collapse
Affiliation(s)
- Caicai Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Mengyao Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|