1
|
Liu L, Liu Z, Tian L, Huang Z, Zhang W, Li J. Preparation of disulfiram-Cu 2+-polylactide nanofibrous membranes via electrostatic spinning and evaluation of their in vitro anticancer effects. Int J Biol Macromol 2024; 282:137469. [PMID: 39528191 DOI: 10.1016/j.ijbiomac.2024.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The antitumor effects of disulfiram (DSF) -a conventional medication used to treat alcohol dependence-have been documented in numerous studies. However, because of its low water solubility and Cu2+-dependent anticancer effects, the application of DSF in cancer therapy has been limited. Nanofibrous membranes produced via electrospinning have large specific surface areas. Consequently, they have been extensively used in biomedical applications, such as tissue scaffolding, drug delivery. In this study, a polylactic acid nanofibrous membrane was designed to encapsulate Cu2+ and DSF. The encapsulated drug was released when the membranes came into contact with the tumor tissue. DSF functioned as a Cu-ion carrier and combined with Cu2+ to induce tumor-cell apoptosis. The anticancer properties of the drug-loaded nanofibrous membrane were verified at the cellular level using in vitro experiments with cells. The results indicated that DSF and Cu2+ were released from the fiber membrane, and the combination of DSF and Cu2+ exhibited a better of cancer are proposed.
Collapse
Affiliation(s)
- Lanjiao Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China.
| | - Zihe Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Liguo Tian
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zefeng Huang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenxiao Zhang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jian Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| |
Collapse
|
2
|
El Fawal G, Sobhy SE, Hafez EE. Biological activities of fig latex -loaded cellulose acetate/poly(ethylene oxide) nanofiber for potential therapeutics: Anticancer and antioxidant material. Int J Biol Macromol 2024; 270:132176. [PMID: 38750845 DOI: 10.1016/j.ijbiomac.2024.132176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Cancer is a fatal disease, and unfortunately, the anticancer drugs harm normal cells. Plant's extracts are the golden key to solving this issue. In this research, fig latex - from Ficus carica- was encapsulated using cellulose acetate (CA) and poly (ethylene oxide) (PEO) polymers via electrospinning method (Fig@CA/PEO). Fig@CA/PEO nanofiber scaffold was characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The average fiber diameter was decreased with an increase in latex concentration from 715 nm to 583 nm. FT-IR spectroscopy indicated the presence of fig latex in Fig@CA/PEO nanofibers. Compared to 5-fluorouracil, Fig@CA/PEO nanofiber scaffold considered safe towards normal cells (WI-38). Moreover, the nanofiber scaffold was efficient against colon cancer cells (Caco) and liver cancer cells (HepG2) as it demonstrated IC50 values for cells by 23.97 μg/mL and 23.96 μg/mL, respectively. Besides, the nanofiber scaffold revealed mechanistic variations in apoptotic oncogenes; described by the upregulation of BCL2 and P21, combined by downregulation of p53 and TNF. Moreover, the nanofiber scaffold showed antioxidant activity counting 33.4, 36 and 41 % of DPPH scavenging as the fig latex concentration increased. The results demonstrate that the Fig@CA/PEO nanofiber scaffold is a promising substitute to traditional chemotherapy.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, 21934, Alexandria, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
3
|
Zhu Y, Wang N, Ling J, Yang L, Omer AM, Ouyang XK, Yang G. In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2024; 660:637-646. [PMID: 38266345 DOI: 10.1016/j.jcis.2024.01.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The Cu2+ complex formed by the coordination of disulfiram (DSF) metabolite diethyldithiocarbamate (DTC), Cu(DTC)2, can effectively inhibit tumor growth. However, insufficient Cu2+ levels in the tumor microenvironment can impact tumor-suppressive effects of DTC. In this study, we proposed a Cu2+ and DSF tumor microenvironment-targeted delivery system. This system utilizes hollow mesoporous silica (HMSN) as a carrier, after loading with DSF, encases it using a complex of tannic acid (TA) and Cu2+ on the outer layer. In the slightly acidic tumor microenvironment, TA/Cu undergoes hydrolysis, releasing Cu2+ and DSF, which further form Cu(DTC)2 to inhibit tumor growth. Additionally, Cu2+ can engage in a Fenton-like reaction with H2O2 in the tumor microenvironment to form OH, therefore, chemodynamic therapy (CDT) and Cu(DTC)2 are used in combination for tumor therapy. In vivo tumor treatment results demonstrated that AHD@TA/Cu could accumulate at the tumor site, achieving a tumor inhibition rate of up to 77.6 %. This study offers a novel approach, circumventing the use of traditional chemotherapy drugs, and provides valuable insights into the development of in situ tumor drug therapies.
Collapse
Affiliation(s)
- Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lianlian Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - A M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China.
| |
Collapse
|
4
|
Malla R, Viswanathan S, Makena S, Kapoor S, Verma D, Raju AA, Dunna M, Muniraj N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers (Basel) 2024; 16:1463. [PMID: 38672545 PMCID: PMC11048531 DOI: 10.3390/cancers16081463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer persists as a global challenge necessitating continual innovation in treatment strategies. Despite significant advancements in comprehending the disease, cancer remains a leading cause of mortality worldwide, exerting substantial economic burdens on healthcare systems and societies. The emergence of drug resistance further complicates therapeutic efficacy, underscoring the urgent need for alternative approaches. Drug repurposing, characterized by the utilization of existing drugs for novel clinical applications, emerges as a promising avenue for addressing these challenges. Repurposed drugs, comprising FDA-approved (in other disease indications), generic, off-patent, and failed medications, offer distinct advantages including established safety profiles, cost-effectiveness, and expedited development timelines compared to novel drug discovery processes. Various methodologies, such as knowledge-based analyses, drug-centric strategies, and computational approaches, play pivotal roles in identifying potential candidates for repurposing. However, despite the promise of repurposed drugs, drug repositioning confronts formidable obstacles. Patenting issues, financial constraints associated with conducting extensive clinical trials, and the necessity for combination therapies to overcome the limitations of monotherapy pose significant challenges. This review provides an in-depth exploration of drug repurposing, covering a diverse array of approaches including experimental, re-engineering protein, nanotechnology, and computational methods. Each of these avenues presents distinct opportunities and obstacles in the pursuit of identifying novel clinical uses for established drugs. By examining the multifaceted landscape of drug repurposing, this review aims to offer comprehensive insights into its potential to transform cancer therapeutics.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Sathiyapriya Viswanathan
- Department of Biochemistry, ACS Medical College and Hospital, Chennai 600007, Tamil Nadu, India;
| | - Sree Makena
- Maharajah’s Institute of Medical Sciences and Hospital, Vizianagaram 535217, Andhra Pradesh, India
| | - Shruti Kapoor
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Deepak Verma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Manikantha Dunna
- Center for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500085, Telangana, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
5
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
6
|
Chevalier RC, Oliveira Júnior FD, Cunha RL. Modulating digestibility and stability of Pickering emulsions based on cellulose nanofibers. Food Res Int 2024; 178:113963. [PMID: 38309879 DOI: 10.1016/j.foodres.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Cellulose nanofibers (CNF) have been widely studied for their biodegradability and for their unique advantages as a stabilizer in Pickering-type emulsions. However, it is challenging to produce cellulose nanofibers from agroindustry waste with good techno-functional properties, without the use of harsh process conditions. Green alternatives (eco-friendly) have been studied to obtain nanofibers, such as enzymatic hydrolysis and/or application of mechanical processes. In this work, we used acid hydrolysis (as a control and example of an efficient method), enzymatic hydrolysis and a mechanical process (ultrasound) to obtain cellulose nanofibers. We also evaluated the effect of the presence of ethyl groups in the cellulosic matrix (ethylcellulose) on the stabilizing mechanism of emulsions. All cellulose nanofibers were able to produce Pickering emulsions at concentrations of 0.01-0.05% (w/w), although showing differences in emulsion stability and digestibility. Morphology of the different cellulose nanofibers affected the viscosity of the aqueous suspensions used as continuous phase. Emulsions with nanofibers obtained from cassava peel (without the presence of ethyl groups) were stabilized only by the Pickering-type mechanism, while ethylcellulose nanofibers also showed surface activity that contributed to the stability of the emulsion. Furthermore, these latter emulsions showed greater release of free fatty acids in in vitro digestion compared to emulsions stabilized by cellulose nanofibers. Despite these differences, in vitro digestion showed the potential of applying cellulose-stabilized emulsions to control the rate of lipid digestion, due to the low amount of free fatty acids released (<20%).
Collapse
Affiliation(s)
- Raquel Costa Chevalier
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil
| | - Fernando Divino Oliveira Júnior
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil.
| |
Collapse
|
7
|
Wang R, Li N, Liu H, Li R, Zhang L, Liu Z, Peng Q, Ren L, Liu J, Li B, Jiao T. Construction of cellulose acetate-based composite nanofiber films with effective antibacterial and filtration properties. Int J Biol Macromol 2024; 254:128102. [PMID: 37972842 DOI: 10.1016/j.ijbiomac.2023.128102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In recent years, the safety of public health has attracted more and more attention. In order to avoid the spread of bacteria and reduce the diseases caused by their invasion of the human body, novel filtration and antibacterial materials have attracted more and more attention. In this work, the antibacterial agents silver nanoparticles (AgNPs) and cetylpyridine bromide (CPB) were introduced into a cellulose acetate (CA) nanofiber film by electrospinning technology to prepare CA-based composite films with good antibacterial and filtration properties. The results of the antibacterial test of the composite nanofiber films showed that AgNPs and CPB had synergistic antibacterial effects and exhibited good antibacterial properties against a variety of bacteria. In addition, in vitro cytotoxicity, skin irritation and skin sensitization experiments proved that the CA/AgNPs, CA/CPB and CA/CPB/AgNPs films produced no skin irritation or sensitization in the short term. These are expected to become potential materials for the preparation of new antibacterial masks. This work provides a new idea for developing materials with good antibacterial properties for enhancing protection via filtration masks.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Hui Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Li
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Liqun Ren
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China.
| | - Jinxia Liu
- School of Basic Medicine, Chengde Medical College, Chengde 067000, China.
| | - Bingfan Li
- School of Vehicles and Energy, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
8
|
Nakakubo K, Biswas FB, Taniguchi T, Endo M, Sakai Y, Wong KH, Mashio AS, Nishimura T, Maeda K, Hasegawa H. Insight into stability of dithiocarbamate-modified adsorbents: Oxidation of dithiocarbamate. CHEMOSPHERE 2023; 343:140216. [PMID: 37748655 DOI: 10.1016/j.chemosphere.2023.140216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
We previously reported that monoalkyl dithiocarbamate-modified cellulose (DMC) exhibited excellent adsorption performance for arsenite (AsIII), cadmium (CdII), lead (PbII), gold (AuIII), silver (AgI), platinum (PtIV), and palladium (PdII). However, its adsorption capability for AsIII decreased by 96.4% after two weeks of storage at 40 °C under an air atmosphere. This decrease in adsorption ability could occur for other metals that dithiocarbamates can extract. In this study, we investigated the adsorption performance of DMC for various metals before and after storage and proposed a possible mechanism for this decrease. We found significant decreases in the adsorption abilities of PbII (11.4%), AgI (39.5%), PtIV (65.5%), and PdII (69.6%), whereas AuIII and CdII adsorption was largely retained, with decreases of 1.1% and 4.0%, respectively. FTIR analysis of the stored DMC revealed the formation of S-S bonds and the retention of dithiocarbamate peaks, indicating the formation of dithiocarbamate dimers (thiuram disulfides). To further support thiuram disulfide formation, dialkyl thiuram disulfides were tested for the adsorption of the seven employed metals. The metal adsorption behavior of dialkyl thiuram disulfides was almost identical to that of the stored adsorbent, ensuring thiuram disulfide formation. In conclusion, the loss of adsorption capability can be mainly attributable to the formation of thiuram disulfide.
Collapse
Affiliation(s)
- Keisuke Nakakubo
- National Institute of Advanced Industrial Science and Technology (AIST), Department of Energy and Environment, Environmental Management Research Institute, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Foni B Biswas
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tsuyoshi Taniguchi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaru Endo
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji-Shi, Hyogo, 671-1283, Japan
| | - Yuto Sakai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Kramar A, Luxbacher T, González-Benito J. Solution blow co-spinning of cellulose acetate with poly(ethylene oxide). Structure, morphology, and properties of nanofibers. Carbohydr Polym 2023; 320:121225. [PMID: 37659793 DOI: 10.1016/j.carbpol.2023.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 09/04/2023]
Abstract
Cellulose acetate (CA) nanofibers are prepared using solution blow co-spinning (SBS) with poly(ethylene oxide) (PEO). The pure CA membranes are obtained by washing water-soluble PEO from the fibrous CA-PEO blend. Nanofibrous membranes are characterized using optical and scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared spectroscopy (ATR-FTIR), and surface zeta potential measurements. Thermal transitions from DSC and ATR-FTIR spectra analysis were used to confirm the removal of the PEO. Although the characteristic signals of PEO are not observed by FTIR, an additional thermal step transition in CA nanofibers indicates the embedding of a small amount of PEO (up to 6 wt%). SEM analysis shows that CA-PEO blends are constituted by fibers with mean diameters from 671 to 857 nm (depending on the SBS parameters), while after PEO removal, diameters range from 567 to 605 nm. We propose a new method for staining CA-PEO membranes with iodine solution in absolute ethanol that allows the differentiation of CA and PEO components with an optical microscope. The microscopy results suggest that PEO assists in the spinning by enveloping CA nanofibers, allowing uninterrupted processing. The successful deacetylation to cellulose using an aqueous KOH solution is confirmed with zeta potential measurements and ATR-FTIR.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| | | | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| |
Collapse
|
10
|
Saha T, Sinha S, Harfoot R, Quiñones-Mateu ME, Das SC. Inhalable dry powder containing remdesivir and disulfiram: Preparation and in vitro characterization. Int J Pharm 2023; 645:123411. [PMID: 37703955 DOI: 10.1016/j.ijpharm.2023.123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The respiratory tract, as the first and most afflicted target of many viruses such as SARS-CoV-2, seems to be the logical choice for delivering antiviral agents against this and other respiratory viruses. A combination of remdesivir and disulfiram, targeting two different steps in the viral replication cycle, has showed synergistic activity against SARS-CoV-2 in-vitro. In this study, we have developed an inhalable dry powder containing a combination of remdesivir and disulfiram utilizing the spray-drying technique, with the final goal of delivering this drug combination to the respiratory tract. The prepared dry powders were spherical, and crystalline. The particle size was between 1 and 5 μm indicating their suitability for inhalation. The spray-dried combinational dry powder containing remdesivir and disulfiram (RDSD) showed a higher emitted dose (ED) of >88% than single dry powder of remdesivir (RSD) (∼72%) and disulfiram (DSD) (∼84%), with a fine particle fraction (FPF) of ∼55%. Addition of L-leucine to RDSD showed >60% FPF with a similar ED. The in vitro aerosolization was not significantly affected after the stability study conducted at different humidity conditions. Interestingly, the single (RSD and DSD) and combined (RDSD) spray-dried powders showed limited cellular toxicity (CC50 values from 39.4 to >100 µM), while maintaining their anti-SARS-CoV-2 in vitro (EC50 values from 4.43 to 6.63 µM). In a summary, a combinational dry powder formulation containing remdesivir and disulfiram suitable for inhalation was developed by spray-drying technique which showed high cell viability in the respiratory cell line (Calu-3 cells) retaining their anti-SARS-CoV-2 property. In the future, in vivo studies will test the ability of these formulations to inhibit SARS-CoV-2 which is essential for clinical translation.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
11
|
Li SF, Wu JH, Hu TG, Wu H. Encapsulation of quercetin into zein-ethyl cellulose coaxial nanofibers: Preparation, characterization and its anticancer activity. Int J Biol Macromol 2023; 248:125797. [PMID: 37442510 DOI: 10.1016/j.ijbiomac.2023.125797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
In order to efficiently improve the colon-targeted delivery of quercetin, the hydrophobic core-shell nanofibers were fabricated to encapsulate quercetin using ethyl cellulose as the shell and zein as the core by coaxial electrospinning. The encapsulation efficiency of coaxial nanofibers reached >97 %. FTIR and XRD results revealed the interactions between quercetin and wall materials and quercetin was encapsulated in an amorphous state. The thermal stability and surface hydrophobicity of coaxial nanofibers were improved compared to the uniaxial zein fibers. After in vitro gastrointestinal digestion, the quercetin release from core-shell nanofibers was <12.38 %, while the corresponding value for zein fibers was 36.24 %. DPPH and FRAP assays showed that there was no significant difference in the antioxidant activity of quercetin before and after encapsulation. Furthermore, the encapsulated quercetin exhibited similar anti-proliferative activity against HCT-116 cells compared to the free form. The results suggest these coaxial nanofibers have potential applications in functional foods.
Collapse
Affiliation(s)
- Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Jia-Hui Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
12
|
Gouda M, Khalaf MM, Elmushyakhi A, Abou Taleb MF, Abd El-Lateef HM. Bactericidal activities of Sm2O3/ Sb2O3/graphene oxide loaded cellulose acetate film. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 21:4419-4427. [DOI: 10.1016/j.jmrt.2022.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Synergistic anticancer effects of metformin and Achillea vermicularis Trin-loaded nanofibers on human pancreatic cancer cell line: An in vitro study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Polyvinylidene fluoride/ginger oil nanofiber scaffold for anticancer treatment: preparation, characterization, and biological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Nostoc muscorum is a novel source of microalgal lectins with potent antiviral activity against herpes simplex type-1. Int J Biol Macromol 2022; 210:415-429. [PMID: 35504413 DOI: 10.1016/j.ijbiomac.2022.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
Abstract
In our survey for a new antiviral agent, two types of lectin were purified from Nostoc muscorum using both ion-exchange and affinity columns chromatography. Nostoc muscorum lectins (NMLs) are categorized based on their carbohydrate preference. Nostoc muscorum lectin-1(NML-1) exhibited a strict binding specificity for complex glycoproteins without linked carbohydrates, and the other displayed specificity for α- glycosides mannose polymers (NML-2) and was classified as a glycoprotein with 16.8% linked carbohydrates. NML-1 displayed a single band of 166 kDa on native-PAGE and two bands of 81 kDa and 85 kDa on SDS-PAGE, which confirmed the heterodimeric nature of this lectin. While NML-2 is a 50 kDa glycoprotein composed of 25 kDa subunits. Physical characterization of NML-1 displayed its stability at a higher temperature of 90 °C for 5 min and over a wide pH range (4-9), while MNL-2 displayed stability up to a temperature of 80 °C for 25 min and a pH range of 5-8. NML-1 didn't require metal ions for agglutination activity, while the activity of NML-2 was doubled by manganese ions. The antiviral activity of two lectins was assessed against herpes simplex type-1 (HSV-1) using a plaque assay which revealed that NML-1 inhibited HSV-1 infection at an early stage in contrast to NML-2 which exerted its antiviral effect at the late stage of infection. These results suggest that Nostoc muscorum is a unique lead for antiviral drug discovery as it is a novel source for antiviral lectins with different modes of action.
Collapse
|