1
|
Khan I, Ali N, Jing Z, Khan A, Ali F, Hhan F, Kareem A, Sun Y, Al Balushi RA, Al-Hinaai MM, Al-Harthy T, Nawaz A. Biopolymer‑carbonaceous composites, progress, and adsorptive mitigation of water pollutants. Int J Biol Macromol 2024; 274:133379. [PMID: 38936571 DOI: 10.1016/j.ijbiomac.2024.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Chitin is the second most abundant natural biopolymer, which is composed of N-acetyl glucosamine units linked by β-(1 → 4) Chitosan is an N-deacetylated product of chitin. Properties of chitosan and chitin, such as biocompatibility, non-toxic nature, and biodegradability, make them successful alternatives for energy and environmental applications. However, their low mechanical properties, small surface area, reduced thermal properties, and greater pore volume restrict the potential for adsorption applications. Multiple investigations have demonstrated that these flaws can be prevented by fabricating chitosan and chitin with carbon-based composites. This review presents a comprehensive analysis of the fabrication of chitosan/chitin carbon-based materials. Furthermore, this review examines the prevalent technologies of functionalizing chitosan/chitin biopolymers and applications of chitin and chitosan as well as chitosan/chitin carbon-based composites, in various environmental fields (mitigating diverse water contaminants and developing biosensors). Also, the subsequent regeneration and reuse of adsorbents were also discussed. Finally, we summarize a concise overview of the difficulties and potential opportunities associated with the utilization of chitosan/chitin carbon-based composites as adsorbents to remove water contaminants.
Collapse
Affiliation(s)
- Ibrahim Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Zhang Jing
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Fawad Hhan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Abdul Kareem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yangshuo Sun
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Arif Nawaz
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Nagaraja B, Janga JK, Hossain S, Verma G, Palomino AM, Reddy KR. Novel chitosan-based barrier materials for environmental containment: Synthesis, characterization, and contaminant removal capacities and mechanisms. CHEMOSPHERE 2024; 359:142285. [PMID: 38723684 DOI: 10.1016/j.chemosphere.2024.142285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite.
Collapse
Affiliation(s)
- Banuchandra Nagaraja
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Jagadeesh Kumar Janga
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Sadam Hossain
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, 423 John D. Tickle Building, Knoxville, TN, 37996, USA.
| | - Gaurav Verma
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Angelica M Palomino
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, 423 John D. Tickle Building, Knoxville, TN, 37996, USA.
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
4
|
Wang C, Qiao J, Yuan J, Tang Z, Chu T, Lin R, Wen H, Zheng C, Chen H, Xie H, Peng C, Tan Y. Novel chitosan-modified biochar prepared from a Chinese herb residue for multiple heavy metals removal: Characterization, performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130830. [PMID: 38734264 DOI: 10.1016/j.biortech.2024.130830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
In this study, the sorption properties of Cr(VI), As(III), and Pb(II) on chitosan-modified magnetic biochar (CMBC) derived from residues of Ligusticum chuanxiong Hort. were investigated. CMBC was found to be a valuable material for removing three heavy metals from water simultaneously. Kinetic analysis suggested Cr(VI), As(III), and Pb(II) were chemisorbed onto CMBC, while isotherm data conformed well to Langmuir model, the maximum adsorption capacity of CMBC was found to be 65.74 mg/g for Cr(VI), 49.32 mg/g for As(III), and 69.45 mg/g for Pb(II). Experiments, characterization, and density functional theory (DFT) calculations were employed to explore the mechanisms. Furthermore, CMBC demonstrated excellent removal rates of over 95% for Cr(VI), 99% for As(III) and Pb(II) from contaminated water bodies. This work shows that CMBC holds significant potential for wastewater treatment of heavy metals and provides an effective solution for the utilization of Chinese herb residues in environmental remediation.
Collapse
Affiliation(s)
- Chengjiu Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jixu Qiao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jiandan Yuan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhentao Tang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Tianzhe Chu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruifeng Lin
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongting Wen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, PR China.
| | - Hulan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Chen G, Yin Y, Zhang X, Qian A, Pan X, Liu F, Li R. Enhanced Adsorption of Methyl Orange from Aqueous Phase Using Chitosan-Palmer Amaranth Biochar Composite Microspheres. Molecules 2024; 29:1836. [PMID: 38675656 PMCID: PMC11054346 DOI: 10.3390/molecules29081836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
To develop valuable applications for the invasive weed Palmer amaranth, we utilized it as a novel biochar source and explored its potential for methyl orange adsorption through the synthesis of chitosan-encapsulated Palmer amaranth biochar composite microspheres. Firstly, the prepared microspheres were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and were demonstrated to have a surface area of 19.6 m2/g, a total pore volume of 0.0664 cm3/g and an average pore diameter of 10.6 nm. Then, the influences of pH, dosage and salt type and concentration on the adsorption efficiency were systematically investigated alongside the adsorption kinetics, isotherms, and thermodynamics. The results reveal that the highest adsorption capacity of methyl orange was obtained at pH 4.0. The adsorption process was well fitted by a pseudo-second-order kinetic model and the Langmuir isotherm model, and was spontaneous and endothermic. Through the Langmuir model, the maximal adsorption capacities of methyl orange were calculated as 495.0, 537.1 and 554.3 mg/g at 25.0, 35.0 and 45.0 °C, respectively. Subsequently, the adsorption mechanisms were elucidated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy investigations. It is indicated that electrostatic interactions, hydrogen bonding, π-π interactions and hydrophobic interactions between methyl orange and the composite microspheres were pivotal for the adsorption process. Finally, the regeneration studies demonstrated that after five adsorption-desorption cycles, the microspheres still maintained 93.6% of their initial adsorption capacity for methyl orange. This work not only presents a promising method for mitigating methyl orange pollution but also offers a sustainable approach to managing Palmer amaranth invasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Liu
- School of Biological Science, Jining Medical University, No. 669 Xueyuan Road, Donggang District, Rizhao 276826, China; (G.C.); (Y.Y.); (X.Z.); (A.Q.); (X.P.)
| | - Rui Li
- School of Biological Science, Jining Medical University, No. 669 Xueyuan Road, Donggang District, Rizhao 276826, China; (G.C.); (Y.Y.); (X.Z.); (A.Q.); (X.P.)
| |
Collapse
|
6
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
7
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
Mondal H, Datta B. Banana Peel Derived Chitosan-Grafted Biocomposite for Recovery of NH 4+ and PO 43. ACS OMEGA 2023; 8:43674-43689. [PMID: 38027321 PMCID: PMC10666154 DOI: 10.1021/acsomega.3c05229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Biomass-derived adsorbents afford accessible and inexpensive harvesting of nitrogen and phosphorus from wastewater sources. Human urine is widely accepted as a rich source of nitrogen and phosphorus. However, direct use of urine in agriculture is untenable because of its unpleasant smell, pathogen contamination, and pharmaceutical residues. In this work, we have grafted chitosan onto dried and crushed banana peel (DCBP) to generate the biocomposite DCBP/Ch. A combination of FTIR, TGA, XRD, FESEM, EDX, and NMR analyses were used to characterize DCBP/Ch and reveal condensation-aided covalent conjugation between O-H functionalities of DCBP and chitosan. The adsorption performance of DCBP/Ch toward NH4+ and PO43- is in sync with its attractive surface porosity, elevated crystallinity, and thermostability. The maximum adsorption capacity of DCBP/Ch toward NH4+/PO43- was estimated as 42.16/15.91 mg g-1 at an operating pH of 7/4, respectively, and ranks highly when compared to previously reported bioadsorbents. DCBP/Ch performs admirably when tested on artificial urine. While nitrogen and phosphorus harvesting from human urine using single techniques has been reported previously, this is the first report of a single adsorbent for recovery of NH4+ and PO43-. The environmental compatibility, ease of preparation, and economic viability of DCBP/Ch present it as an attractive candidate for deployment in waste channels.
Collapse
Affiliation(s)
- Himarati Mondal
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Bhaskar Datta
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
- Department
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
9
|
Stachowiak M, Cegłowski M, Kurczewska J. Hybrid chitosan/molecularly imprinted polymer hydrogel beads doped with iron for selective ibuprofen adsorption. Int J Biol Macromol 2023; 251:126356. [PMID: 37595706 DOI: 10.1016/j.ijbiomac.2023.126356] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Pharmaceutical pollutants are a group of emerging contaminants frequently found in water streams. In this study, the composite chitosan beads with incorporated molecularly imprinted polymers (monoliths or microparticles) and iron(III) hydroxide were fabricated to remove ibuprofen from aqueous solutions. The adsorptive properties were investigated in different conditions to evaluate the influence of solution pH, adsorbent dose, ibuprofen initial concentration, adsorption time, and temperature. The highest adsorption capacity (79.41 mg g-1), about twice as large as that for the chitosan beads without polymers (39.42 mg g-1), was obtained for the ones containing monoliths imprinted with ibuprofen. The theoretical maximum adsorption capacity of 103.93 mg g-1 was obtained based on the experiments in optimal pH 5. The adsorption of ibuprofen on the hybrid hydrogel beads followed the Freundlich isotherm and pseudo-second-order kinetic models. The process was found as endothermic and thermodynamically spontaneous. The adsorbent with a molecularly imprinted polymer retained its selectivity in the presence of other molecules. The imprinted cavities, chitosan functional groups, and iron hydroxide were presumably responsible for interactions with ibuprofen molecules. Additionally, the effectiveness of the adsorbent did not change significantly in real water samples and remained at a satisfactory level for up to four desorption-adsorption cycles.
Collapse
Affiliation(s)
- Maria Stachowiak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Joanna Kurczewska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
10
|
Zhang Z, He YC, Liu Y. Efficient antibacterial and dye adsorption by novel fish scale silver biochar composite gel. Int J Biol Macromol 2023; 248:125804. [PMID: 37453636 DOI: 10.1016/j.ijbiomac.2023.125804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
A silver-loaded carbon-chitosan-polyvinyl alcohol gel (C/CTS/PVA) was designed for suppressing microbial growth and dye adsorption. The antibacterial test results showed that C/CTS/PVA gel had a good antibacterial ability against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The inhibition rate in water was 100 %, and the antibacterial rate remained above 95 % within 35 days after preparation. The tight spatial structure provided by the adhesive effect of PVA and CTS effectively prevented water loss and enhanced the stability of the gel. The adsorption curves of the gel were fitted by establishing the pseudo-first order and pseudo-second order kinetic models. The adsorption curves were more consistent with the pseudo-second-order kinetic model. The best adsorption effect for Malachite green was 128.12 mg/g. C/CTS/PVA gel had a remarkable adsorption effect on Malachite green, Congo red, Methyl orange, and Methylene blue. In general, C/CTS/PVA gels have great potential for the treatment of sewage in the future.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Zhao Y, Song Y, Li R, Lu F, Yang Y, Huang Q, Deng D, Wu M, Li Y. Enhanced Reactive Brilliant Blue Removal Using Chitosan-Biochar Hydrogel Beads. Molecules 2023; 28:6137. [PMID: 37630389 PMCID: PMC10458918 DOI: 10.3390/molecules28166137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
To address the challenges associated with the weak affinity and difficult separation of biochar, we developed chitosan-biochar hydrogel beads (CBHBs) as an efficient solution for removing reactive brilliant blue (RBB KN-R) from wastewater. The adsorption behavior and mechanism of RBB KN-R onto CBHBs were extensively studied. Notably, the adsorption capacity of RBB KN-R showed pH-dependence, and the highest adsorption capacity was observed at pH 2. The adsorption process was well fitted with the pseudo-second-order kinetic model and the intraparticle diffusion model. Film diffusion and intraparticle diffusion were both responsible for the adsorption of RBB KN-R onto CBHBs. At 298.15 K, the maximum adsorption capacity qm was determined to be 140.74 mg/g, with higher temperatures favoring the adsorption process. A complex mechanism involving π-π interactions, electrostatic attraction, hydrophobic interaction, and hydrogen bonding was found to contribute to the overall adsorption process. The experimental data discovered the coexisting substances and elevated ionic strength hindered the adsorption capacity. Significantly, after three cycles of adsorption-desorption, the CBHBs maintained an adsorption capacity above 95% for RBB KN-R. These promising results imply that CBHBs are a durable and cost-effective adsorbent for efficient removal of dyes from wastewater.
Collapse
Affiliation(s)
- Yangyang Zhao
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Yang Song
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Rui Li
- School of Biological Science, Jining Medical University, No. 669 Xueyuan Road, Donggang District, Rizhao 276826, China;
| | - Fengfan Lu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Yibin Yang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Qiongjian Huang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Dongli Deng
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Mingzhu Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Ying Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| |
Collapse
|
12
|
Xu J, Li Y, Yang J, Zhou S, Situ W. Plasma etching effect on the molecular structure of chitosan-based hydrogels and its biological properties. Int J Biol Macromol 2023; 230:123257. [PMID: 36646344 DOI: 10.1016/j.ijbiomac.2023.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
To reasonably use hydrogels in healthcare field, this study four kinds of chitosan (CTS)-based hydrogels with different molecular structures. With plasma etching, the morphology, chemical groups' proportion, and hydrophilicity of the hydrogel surface were changed. At 40 min of modification, the ratios of CO and NH2 on the CTS40-based hydrogel surface increased and reached their maximum values of 40.31 % and 89.17 %, respectively. Combined with the changes in hydrophilic chemical groups and the hydrogel's network structure, the hydrogel surface's wettability changed after plasma etching. From the results, CTS40-based hydrogel showed the lowest contact angle (77.40 ± 3.89°) with 80 min modification due to its dense network structure of CTS and appropriate ratio of hydrophilic groups on the surface. With these molecular structural changes, the antibacterial properties of CTS-based hydrogels against Staphylococcus aureus were improved. Moreover, the functional components delivery system coating with these CTS-based hydrogels showed colon-site controlled-release property. The hydrogels also facilitated the growth of Caco2 and Hic cells, which had 72.74 %-453.27 % cell viability of Caco2 cells on the surface. Therefore, the antibacterial property and biocompatibility of plasma modified CTS-based hydrogels have been demonstrated. The mechanism between molecular structure changes of CTS with plasma etching and its properties was discussed, which would provide a promising carrier material for utilizing healthcare field.
Collapse
Affiliation(s)
- Juncong Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyuan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Subin Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbei Situ
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Nhung NTH, Long VD, Fujita T. A Critical Review of Snail Shell Material Modification for Applications in Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1095. [PMID: 36770102 PMCID: PMC9919195 DOI: 10.3390/ma16031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Sea material is becoming increasingly popular and widely used as an adsorbent in wastewater treatment. Snail shell, a low-cost and natural animal waste material, has been shown to have a high calcium content (>99%) and a large potential surface area for the development of sustainable adsorbents. This paper presents a novel synthesis of methods for using snail shell absorbent materials in the treatment of wastewater containing heavy metals, textile dyes, and other organic substances. Modified biochar made from snail shells has gained popularity in recent years due to its numerous benefits. This paper discusses and analyzes modification methods, including impregnating with supplements, combining other adsorbents, synthesis of hydroxyapatite, co-precipitation, and the sol-gel method. The analysis of factors influencing adsorption efficiency revealed that pH, contact time, temperature, initial concentration, and adsorbent dose all have a significant impact on the adsorption process. Future research directions are also discussed in this paper as a result of presenting challenges for current snail adsorbents.
Collapse
Affiliation(s)
- Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Vo Dinh Long
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Romanazzi G, Moumni M. Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr Opin Biotechnol 2022; 78:102834. [PMID: 36343563 DOI: 10.1016/j.copbio.2022.102834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Fresh fruits and vegetables contain high percentage of water and continue metabolic activity after being harvested, resulting in ripening, increased sensitivity to decay-causing fungi, and consequent loss and waste. Edible coatings are prepared from naturally occurring renewable sources and can contribute to reducing waste, respecting environment, and consumer health. Chitosan and other edible coatings form a thin layer surrounding fresh produce that acts as a protective agent, extending shelf life, and have the potential to control their ripening process and maintain nutritional properties of the coated product. This review discusses recent research on the application of chitosan and other edible coatings to prevent fungal decay, keep the quality, and reduce fresh product waste.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Marwa Moumni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
15
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|