1
|
Xu E, Sun Y, Yu Z, Zheng J. Epigallocatechin Gallate Alleviates Cisplatin Induced Intestinal Injury in Rats via Inhibiting NRF2/Keap1 Signaling Pathway and Regulating Gut Microbiota and Metabolites. Mol Nutr Food Res 2025; 69:e202400784. [PMID: 39757492 DOI: 10.1002/mnfr.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Cisplatin (CIS) is a broad-spectrum anticancer drug widely used in the clinic; however, one of its side effects is that it can cause intestinal damage such as loss of appetite, vomiting, and diarrhea in patients. Epigallocatechin gallate (EGCG) is one of the main active substances in green tea, which has the effects of antitumor multiple drug resistance, antioxidation, and antiinflammatory properties. The aim of this study was to explore the protective effect of EGCG on CIS-induced intestinal injury in rats. First, physiological indices and HE staining indicated that compared with the control group, the physiological state of rats in the CIS group was worse, and the intestinal tissue was damaged, especially the ileum. In contrast, pretreatment with EGCG (20, 40, and 80 mg/kg) effectively alleviated the intestinal damage induced by CIS, with the 40 mg/kg dose demonstrating the most substantial protective effect. Additionally, 40 mg/kg EGCG pretreatment mitigated CIS-induced morphological and ultrastructural damage to intestinal tissues, reduced bacterial translocation, and preserved the integrity of the intestinal barrier. This treatment also altered the abundance of 19 bacterial species, including Lactobacillus and Shigella, and influenced amino acid metabolism and 15 metabolic pathways, including vitamin B6 metabolism by 16S RNA and metabolome sequencing. Furthermore, the expression of proteins associated with autophagy and the NRF2/Keap1 signaling pathway was inhibited. Lastly, ML385 (NRF2 signaling pathway inhibitor) reversed the protective effects of EGCG. Taken together, our findings indicate that EGCG ameliorates CIS induced hepatoenteric toxicity in rats by regulating the intestinal flora and targeting the Nrf2/Keap1 signal axis.
Collapse
Affiliation(s)
- Enshuang Xu
- Department of Veterinary Surgery, College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Sun
- Department of Veterinary Surgery, College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhiying Yu
- Department of Veterinary Surgery, College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiasan Zheng
- Department of Veterinary Surgery, College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Zhang S, Ding C, Liu X, Zhao Y, Li S, Ding Q, Zhao T, Ma S, Li W, Liu W. New resource food-arabinogalactan improves DSS-induced acute colitis through intestinal flora and NLRP3 signaling pathway. Int J Biol Macromol 2024; 258:129118. [PMID: 38163502 DOI: 10.1016/j.ijbiomac.2023.129118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Colitis can significantly impact daily life. This study utilized DSS to induce acute colitis in mice and examined the regulatory effect of arabinogalactan (AG). The findings demonstrated that AG intake effectively alleviated the phenotype of DSS-induced colitis in mice and protected against small intestine damage. Furthermore, AG suppressed the secretion of pro-inflammatory factors TNF-α and IL-1β, while promoting the secretion of anti-inflammatory factor IL-10. It also inhibited the secretion of LPS in serum and MPO in colon tissue. Additionally, AG regulated the NF-κB/MAPK/PPARγ signaling pathway and inhibited the NLRP3 inflammasome signaling pathway, thereby ameliorating DSS-induced colitis inflammation in mice. AG also influenced the metabolism of short-chain fatty acids, particularly butyrate, in the intestinal tract of mice. Moreover, AG modulated and enhanced the composition of intestinal flora in mice with colitis, increasing the diversity of dominant flora and promoting the growth of beneficial bacteria. These results highlight the protective effects of arabinogalactan against colitis and its potential applications in the food industry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Shuang Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
3
|
Zhang F, Chen M, Liu X, Ji X, Li S, Jin E. New insights into the unfolded protein response (UPR)-anterior gradient 2 (AGR2) pathway in the regulation of intestinal barrier function in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:225-232. [PMID: 38033605 PMCID: PMC10685161 DOI: 10.1016/j.aninu.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/02/2023]
Abstract
Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets. In both healthy and diseased states, the intestinal barrier is regulated by goblet cells. Alterations in the characteristics of goblet cells are linked to intestinal barrier dysfunction and inflammatory conditions during pathogenic infections. In this review, we summarize the current understanding of the mechanisms of the unfolded protein response (UPR) and anterior gradient 2 (AGR2) in maintaining intestinal barrier function and how modifications to these systems affect mucus barrier characteristics and goblet cell dysregulation. We highlight a novel mechanism underlying the UPR-AGR2 pathway, which affects goblet cell differentiation and maturation and the synthesis and secretion of mucin by regulating epidermal growth factor receptor and mucin 2. This study provides a theoretical basis and new insights into the regulation of intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Mengxian Chen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
4
|
Zheng J, Gong S, Han J. Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells. Int J Mol Sci 2023; 24:15337. [PMID: 37895018 PMCID: PMC10607795 DOI: 10.3390/ijms242015337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and 5 mg/mL) mitigated 100 μg/mL LPS-stimulated IEB dysfunction through increasing transepithelial electrical resistance (TEER), reducing fluorescein isothiocyanate (FITC)-dextran (4 kDa) flux, and up-regulating the protein and mRNA expression of tight junction (TJ) proteins (Claudin-1, Zonula occludens-1 (ZO-1) and Occludin). In addition, AG ameliorated LPS-stimulated IEB dysfunction by reducing interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β levels, decreasing the reactive oxygen species (ROS) level, increasing superoxide dismutase (SOD) activity, increasing the glutathione (GSH) level, and decreasing the levels of malondialdehyde (MDA) and intracellular calcium ([Ca2+]i). Furthermore, 2 mg/mL AG up-regulated the expression of silent information regulator 1 (SIRT1), the phosphorylated adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB) and the inhibitor of NF-κBα (IκBα). Therefore, AG could maintain IEB integrity by activating AMPK/SIRT1 and inhibiting the NF-κB signaling pathway. In conclusion, AG can regulate the AMPK/SIRT1/NF-κB signaling pathway to reduce inflammation and oxidative stress, thus alleviating LPS-stimulated IEB damage.
Collapse
Affiliation(s)
- Jiachen Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Shaoying Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Zhang S, Wang S, Fan YY, Liu WC, Zheng YN, Wang Z, Ren S, Li W. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol 2023; 249:126124. [PMID: 37543271 DOI: 10.1016/j.ijbiomac.2023.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Plant polysaccharides can be used as bioactive natural polymers that provide health benefits, however high molecular weight neutral polysaccharides have not shown good bioactivity. In this study, high molecular weight neutral arabinogalactan was isolated and structurally characterized to investigate it antioxidant activity against IEC-6 cells. In this study, a neutral polysaccharide (AG-40-I-II) was obtained from the roots of Larix gmelinii (Rupr.) Kuzen. and purified using ethanol fractional precipitation and purification on a DEAE-52 cellulose column and a Superose 12 gel filtration column. The structural characteristics of AG-40-I-II was detected by chemical and spectroscopic methods. The results showed that the average molecular weight of AG-40-I-II was 18.6 kDa, the main chain was composed of →4)-β-D-Gal-(1, → 4, 6)-β-D-Gal-(1 and →4)-β- D-Glc-(1, the side chain is composed of T-β-L-Araf(1 → 6). The effect of AG-40-I-II on H2O2-induced IEC-6 cell injury was determined by MTT method. Besides, AG-40-I-II could reduce the level of MDA and increase SOD activity on IEC-6 cells, which could significantly inhibit the production of ROS. Importantly, AG-40-I-II inhibited the splicing of XBP1 by IRE1α through the ERS pathway and reduced the cell apoptosis induced by H2O2. In summary, the results of this study indicate that AG-40-I-II, as a natural source of plant polysaccharides, has good antioxidant activity, and is expected to become a safe plant source of natural antioxidants, which has great potential in biomedicine potential.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Ying Fan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Northeast Normal University, Changchun 130024, China
| | - Wen-Cong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Gong S, Zheng J, Zhang J, Han J. Arabinogalactan ameliorates benzo[a]pyrene-induced intestinal epithelial barrier dysfunction via AhR/MAPK signaling pathway. Int J Biol Macromol 2023:124866. [PMID: 37196716 DOI: 10.1016/j.ijbiomac.2023.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Benzo[a]pyrene (B[a]P), a kind of pollutant, can disrupt the gut microbiota, but its effects on the function of intestinal epithelial barrier (IEB) is still unclear. Arabinogalactan (AG), a natural polysaccharide, can protect intestinal tract. Thus, the purpose of this study was to evaluate the effect of B[a]P on IEB function and the mitigation effect of AG on the IEB dysfunction induced by B[a]P using a Caco-2 cell monolayer model. We found B[a]P could damage the IEB integrity by inducing cell cytotoxicity, increasing lactate dehydrogenase leakage, decreasing the transepithelial electrical resistance, and increasing fluorescein isothiocyanate-dextran flux. The mechanism of B[a]P-induced IEB damage may through induction of oxidative stress, including increasing reactive oxygen species levels, decreasing glutathione levels, reducing the activity of superoxide dismutase, and increasing malonaldehyde levels. Moreover, it can be due to increasing secretion of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α), down-regulated expression of tight junction (TJ) proteins (claudin-1, zonula occludens [ZO]-1, and occludin), and induced activation of aryl hydrocarbon receptor (AhR)/mitogen activated protein kinase (MAPK) signaling pathway. Remarkably, AG ameliorated B[a]P-induced IEB dysfunction through inhibited oxidative stress and pro-inflammatory factor secretion. Our study demonstrated B[a]P could damage the IEB and AG could alleviate this damage.
Collapse
Affiliation(s)
- Shaoying Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachen Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junjie Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Wang JQ, Liu XX, Zhang JJ, Shuai-Zhang, Jiang C, Zheng SW, Wang Z, Li DY, Li W, Shi DF. Amelioration of Cisplatin-Induced kidney injury by Arabinogalactan based on network pharmacology and molecular docking. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|