Bielak K, Benkowska-Biernacka D, Ptak M, Stolarski J, Kalka M, Ożyhar A, Dobryszycki P. Otolin-1, an otolith- and otoconia-related protein, controls calcium carbonate bioinspired mineralization.
Biochim Biophys Acta Gen Subj 2023;
1867:130327. [PMID:
36791829 DOI:
10.1016/j.bbagen.2023.130327]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND
Otoliths and otoconia are calcium carbonate biomineral structures that form in the inner ear of fish and humans, respectively. The formation of these structures is tightly linked to the formation of an organic matrix framework with otolin-1, a short collagen-like protein from the C1q family as one of its major constituents.
METHODS
In this study, we examined the activity of recombinant otolin-1 originating from Danio rerio and Homo sapiens on calcium carbonate bioinspired mineralization with slow-diffusion method and performed crystals characterization with scanning electron microscopy, two-photon excited fluorescence microscopy, confocal laser scanning microscopy and micro-Raman spectroscopy.
RESULTS
We show that both proteins are embedded in the core of CaCO3 crystals that form through the slow-diffusion mineralization method. Both of them influence the morphology but do not change the polymorphic mineral phase. D.rerio otolin-1 also closely adheres to the crystal surface.
GENERAL SIGNIFICANCE
The results suggest, that otolin-1 is not a passive scaffold, but is directly involved in regulating the morphology of the resulting calcium carbonate biocrystals.
Collapse