1
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Ding W, Mo Z, Qi J, Wang M, Zou J, Wang K, Gong D, Zhao Y, Miao H, Zhao Z. Luminescent iron phthalocyanine organic polymer nanosheets with space-separated dual-active sites for the detection and photocatalytic reduction of Cr(Ⅵ) from wastewater. ENVIRONMENTAL RESEARCH 2025; 264:120282. [PMID: 39505132 DOI: 10.1016/j.envres.2024.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cr(Ⅵ) residues in livestock and poultry wastewater are a rising concern for human health and biotic environments. For the removal of Cr(Ⅵ), its simultaneous reduction and adsorption represents a sustainable and efficient strategy. Herein, iron nodes on covalently bonded two-dimensional phthalocyanine organic polymer (PcOP-Fe) nanosheets with space-separated dual-active sites are developed for the simultaneous detection and removal of Cr(VI) from wastewater. In the FeN4 structure of PcOP-Fe nanosheets, Fe acts as an electron capture center, effectively facilitating the accumulation of photogenerated electrons and transferring them to Cr(VI), thereby achieving its photocatalytic reduction. Meanwhile, pyrrolic nitrogen provides excellent adsorption sites, enabling the adsorption of Cr(III) or Cr(0). Fe accumulates the photogenerated electrons from pyrrole N and transfer them to Cr(Ⅵ). The formation of N-Cr(Ⅲ) bonds causes a space-separation between Cr(Ⅵ) and Cr(III). In addition, PcOP-Fe can be used for a Cr(Ⅵ) detection agent. The photoluminescence intensity decreases linearly with increasing Cr(Ⅵ) concentration from 80 μM to 2 mM, with a limit of detection of 0.18 μM. The PcOP-Fe nanosheets exhibit good Cr(Ⅵ) detection and reduction performance in livestock and poultry wastewater, suggesting their suitability for practical sensing applications. Thus, the PcOP-Fe nanosheets with space-separated dual-active sites are promising for the simultaneous detection and removal of Cr(Ⅵ) in water treatment processes.
Collapse
Affiliation(s)
- Wenfei Ding
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jia Qi
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Mengying Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Junyu Zou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kuo Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Daxiang Gong
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hong Miao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
4
|
Wei X, Wang X, Fu Y, Zhang X, Yan F. Emerging trends in CDs@hydrogels composites: from materials to applications. Mikrochim Acta 2024; 191:355. [PMID: 38809308 DOI: 10.1007/s00604-024-06411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.
Collapse
Affiliation(s)
- Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiangyu Zhang
- The First Affiliated Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Traditional Chinese Medicine, Tianjin, 300381, China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China.
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Sun L, Zhou Z, Wu Y, Meng Z, Huang H, Li T, Wang Z, Yang Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg 2+ and its applications in biological and environmental system. Int J Biol Macromol 2024; 266:131209. [PMID: 38565364 DOI: 10.1016/j.ijbiomac.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mercury ion (Hg2+) is one of harmful heavy metal ions that can accumulate inside the human organism and cause some health problems. In the article, a highly effective fluorescent probe named EC-T-PCBM was prepared by grafting flavonol derivatives onto ethyl cellulose for the specific recognition of Hg2+. EC-T-PCBM exhibited a remarkable fluorescence light-up response toward Hg2+ with excellent sensitivity. EC-T-PCBM possessed several prominent sensing properties for Hg2+, such as low detection limit (43.9 nM), short response time (5 min), and wide detection pH range (6-9). The response mechanism of EC-T-PCBM to Hg2+ has been verified through 1H NMR titration and DFT computation. Additionally, EC-T-PCBM not only can be used for accurately determining trace amount of Hg2+ in actual environmental water samples, but also can serve as a portable and rapid device by loading it on test strips for sensitive and selective visualization of Hg2+. More importantly, the confocal fluorescence imaging of onion cells suggested the favorable cell membrane permeability of EC-T-PCBM and its prominent ability to continuously monitor the enrichment from Hg2+ within fresh plant tissues.
Collapse
Affiliation(s)
- Linfeng Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhang P, Raza S, Cheng Y, Claudine U, Hayat A, Bashir T, Ali T, Ghasali E, Orooji Y. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water. Int J Biol Macromol 2024; 261:129146. [PMID: 38176489 DOI: 10.1016/j.ijbiomac.2023.129146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The study explores the synergy of biobased polymers and hydrogels for water purification. Polymer nanomaterial's, synthesized by combining acrylamide copolymer with maleic anhydride, were integrated into sodium alginate biopolymer using an eco-friendly approach. Crosslinking agents, calcium chloride and glutaraladehyde, facilitated seamless integration, ensuring non-toxicity, high adsorption performance, and controlled capacity. This innovative combination presents a promising solution for clean and healthy water supplies, addressing the critical need for sustainable environmental practices in water purification. In addition, the polymer sodium alginate hydrogel (MAH@AA-P/SA/H) underwent characterization via the use of several analytical procedures, such as FTIR, XPS, SEM, EDX and XRD. Adsorption studies were conducted on metals and dyes in water, and pollutant removal methods were explored. We investigated several variables (such as pH, starting concentration, duration, and absorbent quantity) affect a material's capacity to be adsorbed. Moreover, the maximum adsorption towards Cu2+ is 754 mg/g while for Cr6+ metal ions are 738 mg/g, while the adsorption towards Congo Red and Methylene Blue dye are 685 mg/g and 653 mg/g correspondingly, within 240 min. Adsorption results were further analyzed using kinetic and isothermal models, which showed that MAH@AA-P/SA/H adsorption is governed by a chemisorption process. Hence, the polymer prepared from sodium alginate hydrogel (MAH@AA-P/SA/H) has remarkable properties as a versatile material for the significantly elimination of harmful contaminants from dirty water.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Saleem Raza
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| | - Ye Cheng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Umuhoza Claudine
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Asif Hayat
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Bashir
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Tariq Ali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
7
|
Wang H, Chen Y, Mo M, Dorsel PKP, Wu C. Visualized adsorption and enhanced photocatalytic removal of Cr 6+ by carbon dots-incorporated fluorescent nanocellulose aerogels. Int J Biol Macromol 2023; 253:127206. [PMID: 37793519 DOI: 10.1016/j.ijbiomac.2023.127206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
In this study, carbon dots (CDs) and titanate nanofibers (TNs) were mixed with TEMPO-oxidized nanocellulose (TOCNC) to prepare fluorescent nanocellulose aerogels (FNAs) by a Schiff base reaction. The resulting FNA can detect the adsorption of Cr6+ through the fluorescence quenching in CDs and promote the removal of Cr6+ through the synergistic effect of CDs in photocatalysis. The optimized FNA has a maximum adsorption capacity of 543.38 mg/g, higher than most reported Cr6+ adsorbents. This excellent performance is due to the porous structure of the aerogel, which gives it a high specific surface area of 20.53 m2/g and provides abundant adsorption sites. Simultaneously, CDs can enhance the amino-induced Cr6+ adsorption, improve the photocatalytic performance of TNs, and expose more adsorption sites through electrostatic adsorption of amino-induced reduction products (Cr3+). This study explores the preparation of visualized nanosorbents with enhanced photocatalytic removal of Cr6+ and provides a new direction for nanoscale photocatalysts.
Collapse
Affiliation(s)
- Hanyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Meiqing Mo
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Padonou-Kengue Patrick Dorsel
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| |
Collapse
|
8
|
Zuo J, Lv S, Liang S, Zhang S, Wang J, Wei D, Liu L. Fabrication of 1,8-naphthalimide modified cellulose derivative composite fluorescent hydrogel probes and their application in the detection of Cr(VI). Int J Biol Macromol 2023; 253:127082. [PMID: 37769762 DOI: 10.1016/j.ijbiomac.2023.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The design and development of a rapid and quantitative method for the detection of heavy metal ions is of great importance for environmental protection. We have prepared a 1,8-Naphthalimide modified cellulose composite fluorescent hydrogel (CENAEA/PAA) with a stereo double network structure. Characterized by excellent hydrogel functional structure and fluorescence detection performance, it can efficiently and selectively identify and detect Cr(VI) with linear quenching in the range of 0-400 μmol/L and detection limit of 0.58 μmol/L for Cr(VI). The results show that the CENAEA/PAA can effectively adsorb Cr(VI) with a maximum adsorption capacity of 189.04 mg/g. Finally, the morphological characteristics, chemical structure, fluorescence properties and adsorption behavior of CENAEA/PAA were analyzed and fitted well with the pseudo-second-order model and Freundlich model. Thus, the present work provides a green and sustainable approach for the synthesis of a functional material that can be used for the detection and adsorption of heavy metal ions.
Collapse
Affiliation(s)
- Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shanshan Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jialin Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
9
|
Chandran DG, Muruganandam L, Biswas R. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110010-110046. [PMID: 37804379 DOI: 10.1007/s11356-023-30192-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The rampant rise in world population, industrialization, and urbanization expedite the contamination of water sources. The presence of the non-biodegradable character of heavy metals in waterways badly affects the ecological balance. In this modern era, the unavailability of getting clear water as well as the downturn in water quality is a major concern. Therefore, the effective removal of heavy metals has become much more important than before. In recent years, the attention to better wastewater remediation was directed towards adsorption techniques with novel adsorbents such as carbon nanomaterials. This review paper primarily emphasizes the fundamental concepts, structures, and unique surface properties of novel adsorbents, the harmful effects of various heavy metals, and the adsorption mechanism. This review will give an insight into the current status of research in the realm of sustainable wastewater treatment, applications of carbon nanomaterials, different types of functionalized carbon nanotubes, graphene, graphene oxide, and their adsorption capacity. The importance of MD simulations and density functional theory (DFT) in the elimination of heavy metals from aqueous media is also discussed. In addition to that, the effect of factors on heavy metal adsorption such as electric field and pressure is addressed.
Collapse
Affiliation(s)
- Drisya G Chandran
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Loganathan Muruganandam
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rima Biswas
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Sayago UFC, Ballesteros Ballesteros V. Recent Advances in the Treatment of Industrial Wastewater from Different Celluloses in Continuous Systems. Polymers (Basel) 2023; 15:3996. [PMID: 37836045 PMCID: PMC10575443 DOI: 10.3390/polym15193996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
There are numerous studies on water care methods featured in various academic and research journals around the world. One research area is cellulose residue coupled with continuous systems to identify which are more efficient and easier to install. Investigations have included mathematical design models that provide methods for developing and commissioning industrial wastewater treatment plants, but nothing is provided on how to size and start these treatment systems. Therefore, the objective is to determine recent advances in the treatment of industrial wastewater from different celluloses in continuous systems. The dynamic behavior of the research results with cellulose biomasses was analyzed with the mass balance model and extra-particle and intraparticle dispersion, evaluating adsorption capacities, design variables, and removal constants, and making a size contribution for each cellulose analyzed using adsorption capacities. A mathematical model was also developed that feeds on cellulose reuse, determining new adsorption capacities and concluding that the implementation of cellulose waste treatment systems has a high feasibility due to low costs and high adsorption capacities. Furthermore, with the design equations, the companies themselves could design their systems for the treatment of water contaminated with heavy metals with cellulose.
Collapse
|
11
|
Meng Z, Li X, Liang Y, Gu Y, Xu X, Wang Z, Yang Y, Wang S. An efficient chitosan-naphthalimide fluorescent probe for simultaneous detection and adsorption of Hg 2+ and its application in seafood, water and soil environments. Int J Biol Macromol 2023; 247:125807. [PMID: 37453631 DOI: 10.1016/j.ijbiomac.2023.125807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
As a virulent heavy metal ion, Hg2+ will lead to a serious threat to ecosystem and human health. In this work, we reported a chitosan-naphthalimide fluorescent probe CS-NA-ITC for specific recognition and efficient adsorption of Hg2+. CS-NA-ITC showed no fluorescence in solution state, while the fluorescence intensity increased obviously at the presence of Hg2+, accompanied by the fluorescence color becomes from colorless to bright yellow. It displayed favorable properties like low detection limit (73 nM), extensive pH detection range (5-10) and excellent anti-interference ability. The binding pattern of CS-NA-ITC to Hg2+ was verified by Job's plot, XPS analysis and FT-IR test. In addition, CS-NA-ITC was utilized to recognition of Hg2+ in actual water and soil samples and seafood products. Furthermore, the CS-NA-ITC hydrogel could be employed as an efficient Hg2+ adsorbent with good reusability, which adsorption ability was enhanced compared to chitosan hydrogel.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinyan Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuexin Gu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
12
|
Che H, Tian X, Chen W, Dai C, Nie Y, Li Y, Lu L. Simultaneous visual detection of multiple heavy metal ions by a high-throughput fluorescent probe. Mikrochim Acta 2023; 190:311. [PMID: 37468761 DOI: 10.1007/s00604-023-05882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
To develop simultaneous and in-situ detection techniques towards Cr(VI) and Mn(II), Eu/Tb@CDs with white fluorescence were prepared by a one-step hydrothermal method. With the increase of Cr(VI), all fluorescence channels of Eu/Tb@CDs exhibited obvious quenching, and the detection limit (LOD) was 0.10 μM. In the presence of Mn(II), only the fluorescence from Tb and Eu was quenched, while the fluorescence of CDs was not effected. The LOD for Mn(II) was 0.16 μM. More importantly, in the actual water samples where Cr(VI) and Mn(II) coexist, Eu/Tb@CDs can realize their rapid and simultaneous detection by simple spectral calculation. The selective and competitive experiments have also confirmed that the detection of Cr(VI) and Mn(II) was not interfered by common pollutants in groundwater. It is undeniable that the simultaneous detection of multiple targets by one probe not only greatly improves the detection efficiency, but also has important significance for the field monitoring of water quality parameters.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Wei Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Zhang F, Zhang C, Teng J, Han D, Wu L, Hou W. Preparation of hydrogels based on poplar cellulose and their removal efficiency of Cd(II) from aqueous solutions. JOURNAL OF WATER AND HEALTH 2023; 21:676-686. [PMID: 37387335 PMCID: wh_2023_252 DOI: 10.2166/wh.2023.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Industrial heavy metal-contaminated wastewater is one of the main water pollution problems. Adsorbents are a promising method for the removal of heavy metal contaminants. Herein, polyaspartic acid/carboxymethyl poplar sawdust hydrogels (PASP/CMPP) and ascorbic acid/carboxymethyl poplar sawdust hydrogels (VC/CMPP) were prepared by aqueous polymerization using alkalized poplar sawdust (CMPP) as the substrate and PASP and vitamin C (VC) as modifiers. The effective results, provided by the characterization analysis of SEM and BET, indicate that the surface of the PASP/CMPP hydrogel has a larger number of loose pores and a larger pore volume than the VC/CMPP hydrogel. The treatment effects of the two hydrogels on simulated wastewater containing Cd(II) were investigated by a batch of experiments. The results showed that PASP/CMPP had a better adsorption effect than VC/CMPP under the same adsorption conditions. Interestingly, the solid concentration effect was found in the process of sorption kinetics and sorption isotherms. The sorption kinetic curves of Cd(II) on PASP/CMPP were well-fitted by the quasi-second-order kinetics under different adsorbent concentrations. The adsorption conforms to Langmuir and Freundlich adsorption isotherm models. More importantly, PASP/CMPP composites are expected to be used as a new kind of environmental adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China E-mail:
| | | | - Jia Teng
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Zhang X, Peng J, Qi X, Huang Y, Qiao J, Guo Y, Guo X, Wu Y. Nanocellulose/carbon dots hydrogel as superior intensifier of ZnO/AgBr nanocomposite with adsorption and photocatalysis synergy for Cr(VI) removal. Int J Biol Macromol 2023; 233:123566. [PMID: 36758761 DOI: 10.1016/j.ijbiomac.2023.123566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
A novel nanocellulose/carbon dots hydrogel (NCH) was fabricated using cellulose nanofibrils (CN), carbon dots (CD) and zinc oxide (ZnO)/silver bromide (AgBr) nanocomposite, where CD enhanced amino group-induced adsorption of hexavalent chromium (Cr(VI)) and promoted the photocatalytic properties of ZnO/AgBr nanocomposite via the transfer of photogenerated electrons, resulting in enhanced efficiency in the removal of Cr(VI) from aqueous solution. The structure, morphology, and physicochemical properties of the prepared NCH were characterized, with the results of adsorption and photocatalysis experiments showing the maximum theoretical adsorption capacity of the NCH to be 315 mg/g, 219 times that of the ZnO/AgBr nanocomposite; the apparent removal rate constant of the NCH was 0.0319 min-1, 11.7 times that of the ZnO/AgBr nanocomposite. Furthermore, the removal performance of NCH was attributed to CD-enhanced synergistic adsorption and photocatalysis effects, supported by characterization and experimental results. This work provides insight into the design and fabrication of a novel adsorptive photocatalyst with CD-enhanced synergistic adsorption and photocatalysis effects for removing Cr(VI) from aqueous solution.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianzheng Qiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
15
|
de Borja Ojembarrena F, Sammaraie H, Campano C, Blanco A, Merayo N, Negro C. Hexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234172. [PMID: 36500795 PMCID: PMC9736468 DOI: 10.3390/nano12234172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 05/12/2023]
Abstract
Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard's reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L-1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L-1). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g-1. Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.
Collapse
Affiliation(s)
- Francisco de Borja Ojembarrena
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Correspondence: (F.d.B.O.); (C.N.)
| | - Hassan Sammaraie
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Cristina Campano
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Microbial and Plant Biotechnology, Center for Biological Research Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Angeles Blanco
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Noemi Merayo
- Department of Mechanical, Chemical and Industrial Design Engineering, ETSIDI, Polytechnic University of Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Carlos Negro
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Correspondence: (F.d.B.O.); (C.N.)
| |
Collapse
|