1
|
Swarupa S, Thareja P. Techniques, applications and prospects of polysaccharide and protein based biopolymer coatings: A review. Int J Biol Macromol 2024; 266:131104. [PMID: 38522703 DOI: 10.1016/j.ijbiomac.2024.131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The growing relevance of sustainable materials has recently led to the exploration of naturally derived biopolymeric hydrogels as coating materials due to their biodegradability, biocompatibility, ease of fabrication and modification. Although many review articles exist on biopolymeric coatings, they mainly focus on a specific polysaccharide, protein biopolymer, or a particular application- biomedical engineering or food preservation. The current review first summarizes the commonly used polysaccharide and protein-based biopolymers like chitosan, alginate, carrageenan, pectin, cellulose, starch, pullulan, agarose and silk fibroin, gelatin, respectively, with a systematic description of the techniques widely used for physical coating on substrates. Then, broad applications of these biopolymeric coatings on various substrates in biomedical engineering- 3D scaffolds, biomedical implants, and nanoparticles are described in detail. It also entails the application of biopolymeric coatings for food preservation in the form of food packaging and edible coatings. A brief discussion on the newly discovered interest in exploring biopolymers for anticorrosive coating applications is also included. Finally, concluding remarks on the role of biopolymer microstructures in forming homogeneous coatings, prospective alternatives to the currently used biopolymers as coating material and the advent of computer-aided technologies to expedite experimental findings are presented.
Collapse
Affiliation(s)
- Sanchari Swarupa
- Biological Sciences and Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Chemical Engineering, Dr. Kiran C. Patel Centre for Sustainable Development, IIT Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
3
|
Xia Y, Wang S, Meng F, Xu Z, Fang Q, Gu Z, Zhang C, Li P, Kong F. Eco-friendly food packaging based on paper coated with a bio-based antibacterial coating composed of carbamate starch, calcium lignosulfonate, cellulose nanofibrils, and silver nanoparticles. Int J Biol Macromol 2024; 254:127659. [PMID: 37898243 DOI: 10.1016/j.ijbiomac.2023.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Traditional paper-based packaging commonly needs to be coated to achieve sufficient mechanical and barrier performances. In this research, a bio-based coating for paper was developed from carbamate starch (Sc), calcium lignosulfonate (CL), and cellulose nanofibrils (CNF). Controlling the electrostatic and hydrogen-bonding interactions among the components of the coating was conducive to tailoring the structure and performance of the coated paper. When the degree of substitution (Ds) of Sc was 0.10, the amount of CL was 1.00 g, and the amount of CNF was 0.65 % of the weight of Sc, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF coating exhibited increased hydrophobicity and excellent mechanical, air-barrier, and UV-light-barrier properties. After the addition of 0.10 % of silver nano-particles (AgNPs) to the 0.10Sc-1.00CL-0.65CNF coating, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF-0.10AgNPs coating exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. The coated paper was used as the packaging for cherry tomatoes stored under ambient conditions. Due to the synergistic preservation effects of the Sc-CL-CNF coating and AgNPs, the shelf life of the cherry tomatoes was at least 7 days. The coated paper described herein has the potential for applications in the food packaging sector.
Collapse
Affiliation(s)
- Yueyue Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fanrong Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Zhen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qi Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhengang Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chunhu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
5
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
6
|
Matei E, Predescu AM, Șăulean AA, Râpă M, Sohaciu MG, Coman G, Berbecaru AC, Predescu C, Vâju D, Vlad G. Ferrous Industrial Wastes-Valuable Resources for Water and Wastewater Decontamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13951. [PMID: 36360832 PMCID: PMC9657322 DOI: 10.3390/ijerph192113951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Ferrous waste by-products from the metallurgical industry have a high potential for valorization in the context of the circular economy, and can be converted to value-added products used in environmental remediation. This research reviews the latest data available in the literature with a focus on: (i) sources from which these types of iron-based wastes originate; (ii) the types of ferrous compounds that result from different industries; (iii) the different methods (with respect to the circular economy) used to convert them into products applied in water and wastewater decontamination; (iv) the harmful effects ferrous wastes can have on the environment and human health; and (v) the future perspectives for these types of waste.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Maria Râpă
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Mirela Gabriela Sohaciu
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - George Coman
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andrei-Constantin Berbecaru
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Dumitru Vâju
- ICPE Bistrita, 7 Parcului Street, 420035 Bistrita, Romania
| | - Grigore Vlad
- ICPE Bistrita, 7 Parcului Street, 420035 Bistrita, Romania
| |
Collapse
|