1
|
Luo Y, Liu C, Kang S, Ji C, Lai B, Zhang W, Li J, Ren Y. Fluoride ions enhanced cobalt ferrite for peroxymonosulfate activation with efficient performance and active oxygen yield regulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137606. [PMID: 39970638 DOI: 10.1016/j.jhazmat.2025.137606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
The activation of peroxymonosulfate (PMS) by cobalt-based catalysts for the degradation of organic pollutants has been widely studied, while the role of coexisting anions has received little attention. In this study, the performance of atrazine (ATZ) degradation by the addition of fluoride ions (F-) in the activation of PMS by cobalt ferrite (CoFe2O4) was investigated. The addition of F- to the CoFe2O4/PMS system increased ATZ degradation effect from 82 % to 98 % within 10 min, and the rate increased from 0.172 min-1 to 0.431 min-1. At the same time, F- could also enhance the degradation of organic substances such as sulfamethoxazole (SMX), ibuprofen, and iohexol. Based on generating SO4•-, HO• and Co(IV)=O in the CoFe2O4/PMS system, F- enhanced the generation of SO4•-. When coexisting with common substances in water (i.e., inorganic anions, humic acid, hemoglobin and dextran), F- can still increase the reaction rate and reduce their negative impacts. Ion dissolution and control tests verified Co as a valid active site. A potential reaction mechanism was proposed for the complex Co(II)F formation with Co by F-, which enhanced the activation of the PMS by CoFe2O4 and regulated the active species. Finally, it was verified that the low concentration of F- could enhance ATZ degradation within two hours and the remaining F- could be effectively removed by flocculation and precipitation. This research takes utilization of F- in wastewater to promote advanced oxidation processes based on PMS, which provides a new direction for the treatment of actual water pollution.
Collapse
Affiliation(s)
- Yuhan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Shurui Kang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Tang B, Xiong Z, Tao T, Sun Y, Ding D, Li X, Wang C, Yan J, Chi R, Sun L. Activation of peroxymonosulfate over recyclable Co 3O 4/rice straw lignin-based carbon fiber flexible membrane for the degradation of organic pollutants. Int J Biol Macromol 2024; 283:137844. [PMID: 39566770 DOI: 10.1016/j.ijbiomac.2024.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Heterogeneous composite catalysts have gained significant attention in recent years due to their cleanliness, high efficiency, and stable performance. However, the difficulty of recovery and high cost have always limited the development of heterogeneous composite catalysts. Herein, flexible lignin-based carbon fiber (LCF) membranes with easy recovery and low cost were prepared by electrospinning and carbonization using rice straw lignin waste and polyacrylonitrile (PAN). Following in-situ sedimentation and annealing treatment, Co3O4 nanoparticles were successfully anchored on the surface of LCF to achieve Co3O4/LCF composite membrane, which was utilized for activating peroxymonosulfate (PMS) with an impressive 83 % degradation efficiency of tetracycline (TC) within 30 min, the mineralization rate of TC reached 67 % within 90 min, and displayed exceptional degradation capabilities even with interfering substances. Based on the quenching experiments, electron paramagnetic resonance (EPR), electrochemical tests and X-ray photoelectron spectroscopy (XPS), both radical and non-radical pathways were involved for TC degradation, and non-radical pathway was identified as the primary route. Active sites such as CO, graphite N, pyridinic N, and the Co2+/Co3+ redox cycle played the crucial roles during the degradation process. Density functional theory (DFT) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrated the proposal of a plausible degradation pathway for TC.
Collapse
Affiliation(s)
- Bowei Tang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zihao Xiong
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tingting Tao
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ya Sun
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaofang Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang 443000, China
| | - Linbing Sun
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Song W, Ji Y, Yu Z, Li H, Li X, Ren X, Li Y, Xu X, Zhao Y, Yan L. Microenvironment modulation of biocatalyst derived from natural cellulose of wheat straw for enhancing p-nitrophenol degradation via boosting peroxymonosulfate activation. Int J Biol Macromol 2024; 281:136525. [PMID: 39396592 DOI: 10.1016/j.ijbiomac.2024.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO4•-, •OH, O2•-, and 1O2) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.
Collapse
Affiliation(s)
- Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yuqi Ji
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Zihan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Hang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, People's Republic of China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
4
|
Mennani M, Kasbaji M, Ait Benhamou A, Ablouh EH, Grimi N, El Achaby M, Kassab Z, Moubarik A. Lignin-functionalized cobalt for catalytic reductive degradation of organic dyes in simple and hybrid binary systems. CHEMOSPHERE 2024; 350:141098. [PMID: 38171398 DOI: 10.1016/j.chemosphere.2023.141098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
To fulfill the unprecedented valorization approaches for lignocellulose, this work focuses on the potential of lignin-derived catalytic systems for bio-remediation, which are natural materials perceived to address the increased demand for eco-conscious catalyzed processes. A useful lignin-functionalized cobalt (Lig-Co) catalyst has been prepared, well-characterized and deployed for the catalyzed reducing decomposition of stable harmful organic pollutants such as methylene blue (MB) and methyl orange (MO), in simple and binary systems. The multifunctional character of lignin and the presence of various active sites can promote effectively loaded metal nanoparticles (NPs). Considerably, optimizing detoxification tests showed that the uncatalyzed use of NaBH4 as a reductive agent led to an incomplete reduction of organic contaminants over a long period of up to 65 min. Interestingly, Lig-Co catalyst exhibited a high reduction rate and turnover frequency of up to 99.23% and 24.12 min-1 for MB, respectively, while they reached 99.25% and 26.21 min-1 for MO at normal temperature. Kinetically quick catalytic reaction was also demonstrated for the hybrid system, in which the rate constant k was 0.175 s-1 and 0.165 s-1 for MB and MO, respectively, within a distinctly low reaction time of around 120 s. The reproducibility of the Lig-Co catalyst induces a desirable capacity to reduce stable dyes present simultaneously in the binary system, with 6 successive catalytic runs and over 80% of activity retained. Such robust findings underline the considerable interest in developing future lignin-mediated catalytic transformations and upscaling biomass-derived products, to meet the growing demand for sustainable and eco-friendly alternatives in various industries.
Collapse
Affiliation(s)
- Mehdi Mennani
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| | - Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203, Compiègne, Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| |
Collapse
|
5
|
El Allaoui B, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Cellulose beads supported CoFe 2O 4: A novel heterogeneous catalyst for efficient rhodamine B degradation via advanced oxidation processes. Int J Biol Macromol 2024; 259:128893. [PMID: 38159693 DOI: 10.1016/j.ijbiomac.2023.128893] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
In this study, a novel mechanical process was used to produce cellulose beads (CB). These beads were then doped with cobalt ferrite nanoparticles (CoFe2O4 NPs) to serve as catalysts for the degradation of rhodamine B (RhB) through peroxymonosulfate (PMS) activation. The physical and chemical properties of CoFe2O4 and CoFe2O4@CB catalysts were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) combined with energy dispersive X-ray spectrometer (EDX), scanning transmission electron microscopy (STEM) techniques, and thermogravimetric analysis (TGA). To optimize RhB degradation efficiency, Response Surface Methodology (RSM) was employed, utilizing the Box-Behnken design (BBD). Under the optimized conditions of a catalyst dosage of 0.40 g/L, PMS dosage of 0.98 mM, RhB concentration of 40 mg/L, pH of 5.27, and reaction time of 60 min, a remarkable degradation efficiency of 98.51 % was achieved at a temperature of 25 °C. In quenching experiments, 1O2, SO4•-, and HO• species are produced in the CoFe2O4@CB/PMS system, with 1O2, and SO4•- species dominating RhB degradation. Remarkably, the new CoFe2O4@CB catalyst has demonstrated exceptional stability and reusability, validated by recycling tests (up to 78 % of RhB degradation efficiency after a 5-cycle experiment) and subsequent characterizations (FTIR, SEM, and EDX) emphasizing unchanged bands, uniform distribution, and consistent composition after reuse cycles. These results demonstrate the effectiveness of mechanically produced CoFe2O4@CB catalysts for advanced oxidation processes (AOPs), with promising applications in wastewater treatment.
Collapse
Affiliation(s)
- Brahim El Allaoui
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Hanane Benzeid
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
6
|
Luo Z, Wu W, Liu B, Qi Y, Chen L, Lin X. A Co-based nitrogen-doped lignin carbon catalyst with high stability and wide operating window for rapid degradation of antibiotics. Int J Biol Macromol 2023; 253:126601. [PMID: 37652326 DOI: 10.1016/j.ijbiomac.2023.126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Co-based catalysts play a crucial role in the activation of peroxymonosulfate (PMS) for degradation contaminants. However, the practical application of such catalysts is hindered by challenges like the self-aggregation of Co nanoparticles and leaching of Co2+. In this study, the Co-based catalyst Co-N/C@CL was synthesized from carboxymethylated lignin obtained by grafting abundant carboxymethyl groups into alkali lignin, in which the presence of these carboxymethyl groups enhanced its water solubility and allowed the formation of stable macromolecular complexes with Co2+. This catalyst exhibited a high specific surface area (521.8 m2·g-1) and a uniform distribution of Co nanoparticles. Consequently, the Co-N/C@CL/PMS system could completely remove 20 ppm tetracycline (TC) in 2 min at a rate of 2.404 min-1. Experimental results and DFT calculations revealed that the synergistic effect of lignin carbon and Co NPs accelerated the cleavage and electron transfer of OO bonds, thus promoting the formation of 1O2, OH and SO4-, with 1O2 emerging as the predominant contributor. Moreover, Co-N/C@CL displayed excellent cycling stability and low Co2+ leaching. This work not only provides a feasible strategy for the preparation of highly active and stable Co-based carbon materials but also offers a promising catalyst for the efficient degradation of TC.
Collapse
Affiliation(s)
- Zhicheng Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Weidong Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bowen Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yi Qi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Liheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China.
| |
Collapse
|
7
|
Peng Z, Jiang X, Si C, Joao Cárdenas-Oscanoa A, Huang C. Advances of Modified Lignin as Substitute to Develop Lignin-Based Phenol-Formaldehyde Resin Adhesives. CHEMSUSCHEM 2023; 16:e202300174. [PMID: 37338272 DOI: 10.1002/cssc.202300174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Indexed: 06/21/2023]
Abstract
Traditionally, phenols used to prepare phenol-formaldehyde (PF) resin adhesives are obtained from phenolic compounds and various chemicals, which are extracted from petroleum-based raw materials. Lignin, a sustainable phenolic macromolecule in the cell wall of biomass with an aromatic ring and a phenolic hydroxyl group similar to those of phenol, can be an ideal substitute for phenol in PF resin adhesives. However, only a few lignin-based adhesives are produced on a large scale in industry, mainly because of the low activity of lignin. Preparing lignin-based PF resin adhesives with exceptional achievements by modifying lignin instead of phenol is an efficient method to improve the economic benefits and protect the environment. In this review, the latest progress in the preparation of PF resin adhesives via lignin modification, including chemical, physical, and biological modifications, is discussed. In addition, the advantages and disadvantages of different lignin modification methods for adhesives are compared and discussed, and future research directions for the synthesis of lignin-based PF resin adhesives are proposed.
Collapse
Affiliation(s)
- Zhenwen Peng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xiao Jiang
- Department of Forestry Biomaterials, North Carolina State University Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Chuanling Si
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Aldo Joao Cárdenas-Oscanoa
- Forest Industry Department, Faculty of Forest Science, Universidad Nacional Agraria La Molina, Lima, 15024, Perú
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|