1
|
Yu S, Rejinold NS, Choi G, Choy JH. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. NANOSCALE HORIZONS 2024. [PMID: 39648727 DOI: 10.1039/d4nh00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Over the last two decades, advancements in nanomaterials and nanoscience have paved the path for the emergence of nano-medical convergence science, significantly impacting healthcare. In our review, we highlight how these advancements are applied in various biomedical technologies such as drug delivery systems, bio-imaging for diagnostic and therapeutic purposes. Recently, novel inorganic nanohybrid drugs have been developed, combining multifunctional inorganic nanomaterials with therapeutic agents (known as inorganic medicinal nanoarchitectonics). These innovative drugs are actively utilized in cutting-edge medical treatments, including targeted anti-cancer therapy, photo and radiation therapy, and immunotherapy. This review provides a detailed overview of the current development status of inorganic medicinal nanoarchitectonics and explores potential future directions in their advancements.
Collapse
Affiliation(s)
- Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Tokyo Tech Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Institute of Science Tokyo, Yokohama 226853, Japan
| |
Collapse
|
2
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
3
|
Zhang X, Wang P, Wang X, Xu Y, Cheng T, Zhang C, Ding J, Shi Y, Ma W, Yu CY, Wei H. Stabilized, ROS-sensitive β-cyclodextrin-grafted hyaluronic supramolecular nanocontainers for CD44-targeted anticancer drug delivery. Colloids Surf B Biointerfaces 2024; 242:114081. [PMID: 39003850 DOI: 10.1016/j.colsurfb.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between β-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.
Collapse
Affiliation(s)
- Xianshuo Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xinsheng Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Taolin Cheng
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Chengjie Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaying Ding
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yunfeng Shi
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| | - Wei Ma
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Chen X, Wu D, Chen Z. Biomedical applications of stimuli-responsive nanomaterials. MedComm (Beijing) 2024; 5:e643. [PMID: 39036340 PMCID: PMC11260173 DOI: 10.1002/mco2.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Nanomaterials have aroused great interests in drug delivery due to their nanoscale structure, facile modifiability, and multifunctional physicochemical properties. Currently, stimuli-responsive nanomaterials that can respond to endogenous or exogenous stimulus display strong potentials in biomedical applications. In comparison with conventional nanomaterials, stimuli-responsive nanomaterials can improve therapeutic efficiency and reduce the toxicity of drugs toward normal tissues through specific targeting and on-demand drug release at pathological sites. In this review, we summarize the responsive mechanism of a variety of stimulus, including pH, redox, and enzymes within pathological microenvironment, as well as exogenous stimulus such as thermal effect, magnetic field, light, and ultrasound. After that, biomedical applications (e.g., drug delivery, imaging, and theranostics) of stimuli-responsive nanomaterials in a diverse array of common diseases, including cardiovascular diseases, cancer, neurological disorders, inflammation, and bacterial infection, are presented and discussed. Finally, the remaining challenges and outlooks of future research directions for the biomedical applications of stimuli-responsive nanomaterials are also discussed. We hope that this review can provide valuable guidance for developing stimuli-responsive nanomaterials and accelerate their biomedical applications in diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| |
Collapse
|
5
|
Zhang P, Zheng L, Zhang X, Liu M, Li M, Zhang M, Wu JL, Choi MMF, Bian W. Mesoporous Graphene Oxide Nanocomposite Effective for Combined Chemo/Photo Therapy Against Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:7493-7508. [PMID: 39081895 PMCID: PMC11287468 DOI: 10.2147/ijn.s460767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Lung cancer is the most common cancer worldwide, among which non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Chemotherapy, a mainstay modality for NSCLC, has demonstrated restricted effectiveness due to the emergence of chemo-resistance and systemic side effects. Studies have indicated that combining chemotherapy with phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), can enhance efficacy of therapy. In this work, an aminated mesoporous graphene oxide (rPGO)-protoporphyrin IX (PPIX)-hyaluronic acid (HA)@Osimertinib (AZD) nanodrug delivery system (rPPH@AZD) was successfully developed for combined chemotherapy/phototherapy for NSCLC. Methods A pH/hyaluronidase-responsive nanodrug delivery system (rPPH@AZD) was prepared using mesoporous graphene oxide. Its morphology, elemental composition, surface functional groups, optical properties, in vitro drug release ability, photothermal properties, reactive oxygen species production, cellular uptake and cell viability were evaluated. In addition, the in vivo therapeutic effect, biocompatibility, and imaging capabilities of rPPH@AZD were verified by a tumor-bearing mouse model. Results Aminated mesoporous graphene oxide (rPGO) plays a role as a drug delivery vehicle owing to its large specific surface area and ease of surface functionalization. rPGO exhibits excellent photothermal conversion properties under laser irradiation, while PPIX acts as a photosensitizer to generate singlet oxygen. AZD acts as a small molecule targeted drug in chemotherapy. In essence, rPPH@AZD shows excellent photothermal and fluorescence imaging effects in tumor-bearing mice. More importantly, in vitro and in vivo results indicate that rPPH@AZD can achieve hyaluronidase/pH dual response as well as combined chemotherapy/PTT/PDT anti-NSCLC treatment. Conclusion The newly prepared rPPH@AZD can serve as a promising pH/hyaluronidase-responsive nanodrug delivery system that integrates photothermal/fluorescence imaging and chemo/photo combined therapy for efficient therapy against NSCLC.
Collapse
Affiliation(s)
- Peigang Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Lingling Zheng
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Xiaorui Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Miao Liu
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Mingli Li
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Martin M F Choi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Tian G, Huang J, Wu W, Cui Z, Li H, Zhang L, Qi H. Mussel-inspired protein-based nanoparticles for curcumin encapsulation and promoting antitumor efficiency. Int J Biol Macromol 2024; 273:132965. [PMID: 38851615 DOI: 10.1016/j.ijbiomac.2024.132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Curcumin demonstrated therapeutic potential for cancer. However, its medical application is limited due to low solubility, poor stability and low absorption rate. Here, we used the mussel-inspired functional protein (MPKE) to fabricate the curcumin-carrying nanoparticle (Cur-MPKE) for encapsulating and delivering curcumin. The protein MPKE is composed of the mussel module and zwitterionic peptide. The Dopa group bonding characteristic of the mussel module was leveraged for the self-assembly of nanoparticles, while the superhydrophilic property of the zwitterionic peptide was utilized to enhance the stability of nanoparticles. As expected, MPKE and Cur are tightly bound through hydrogen bonds and dynamic imide bonds to form nanoparticles. Cur-MPKE showed improved solubility and stability in aqueous solutions as well as excellent biocompatibility. Besides, Cur-MPKE also exhibited pH-triggered release and enhanced uptake of curcumin by tumor cells, promoting the antioxidant activity and antitumor effect of curcumin. Moreover, systemic experiments of Cur-MPKE to rats demonstrated that Cur-MPKE significantly inhibited tumor tissue growth and proliferation without causing obvious systemic toxicity. This work provides a new strategy for fabricating the delivery system of curcumin with improved stability, sustainability and bioavailability.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Guanfang Tian
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Jie Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Weidang Wu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Haoyue Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mehrabian A, Heravi Shargh V, Badiee A, Alavizadeh SH, Arabi L, Kamali H, Jaafari MR. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J Liposome Res 2024; 34:221-238. [PMID: 37647288 DOI: 10.1080/08982104.2023.2247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tu L, Chen S, Yuan Z, Xiong Y, Luo B, Chen Y, Hou Z, Ke S, Lin N, Li C, Ye S. Amino acid-based metallo-supramolecular nanoassemblies capable of regulating cellular redox homeostasis for tumoricidal chemo-/photo-/catalytic combination therapy. J Colloid Interface Sci 2024; 663:810-824. [PMID: 38447396 DOI: 10.1016/j.jcis.2024.02.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Nanozymes, as nanomaterials with natural enzyme activities, have been widely applied to deliver various therapeutic agents to synergistically combat the progression of malignant tumors. However, currently common inorganic nanozyme-based drug delivery systems still face challenges such as suboptimal biosafety, inadequate stability, and inferior tumor selectivity. Herein, a super-stable amino acid-based metallo-supramolecular nanoassembly (FPIC NPs) with peroxidase (POD)- and glutathione oxidase (GSHOx)-like activities was fabricated via Pt4+-driven coordination co-assembly of l-cysteine derivatives, the chemotherapeutic drug curcumin (Cur), and the photosensitizer indocyanine green (ICG). The superior POD- and GSHOx-like activities could not only catalyze the decomposition of endogenous hydrogen peroxide into massive hydroxyl radicals, but also deplete the overproduced glutathione (GSH) in cancer cells to weaken intracellular antioxidant defenses. Meanwhile, FPIC NPs would undergo degradation in response to GSH to specifically release Cur, causing efficient mitochondrial damage. In addition, FPIC NPs intrinsically enable fluorescence/photoacoustic imaging to visualize tumor accumulation of encapsulated ICG in real time, thereby determining an appropriate treatment time point for tumoricidal photothermal (PTT)/photodynamic therapy (PDT). In vitro and in vivo findings demonstrated the quadruple orchestration of catalytic therapy, chemotherapeutics, PTT, and PDT offers conspicuous antineoplastic effects with minimal side reactions. This work may provide novel ideas for designing supramolecular nanoassemblies with multiple enzymatic activities and therapeutic functions, allowing for wider applications of nanozymes and nanoassemblies in biomedicine.
Collapse
Affiliation(s)
- Li Tu
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Shengqiang Chen
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Zhikang Yuan
- The Key Laboratory for Innovative Drug Target Research of Fujian Province, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yeqi Xiong
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Bingkun Luo
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Ying Chen
- Department of Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen 361004, PR China
| | - Zhenqing Hou
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Sunkui Ke
- Department of Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen 361004, PR China
| | - Naibo Lin
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China.
| | - Chao Li
- Departmentof Surgery, Haicang Hospital, Xiamen Medical College, Xiamen 361026, PR China.
| | - Shefang Ye
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
9
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
10
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Zhang Y, Yu R, Zhao C, Liang J, Zhang Y, Su H, Zhao J, Wu H, Xu S, Zhang Z, Wang L, Zou X, Zhu Y, Zhang S, Lv Y. CAFs Homologous Biomimetic Liposome Bearing BET Inhibitor and Pirfenidone Synergistically Promoting Antitumor Efficacy in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305279. [PMID: 37968249 PMCID: PMC10767438 DOI: 10.1002/advs.202305279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Indexed: 11/17/2023]
Abstract
BRD4 is a member of the BET protein family involved in chromatin remodeling and transcriptional regulation. Several BET inhibitors (BETi) have entered clinical trials, demonstrating potential in inducing cancer cell apoptosis and tumor regression. However, resistance to BETi is common in solid tumors. In pancreatic cancer, it is found that cancer-associated fibroblasts (CAFs) in the tumor microenvironment reduce the BET inhibitor JQ1 sensitivity by inducing BRD4 expression. Moreover, CAFs play a crucial role in the formation of a dense stromal barrier. Therefore, targeting CAFs in the tumor microenvironment of pancreatic cancer not only enhances cancer cells sensitivity to JQ1 but also increases drug perfusion and improves oxygen supply, thus reducing glycolysis and limiting energy supply. To address this challenge, a homologous targeting mechanism utilizing activated fibroblast membrane-coated liposomes is proposed for specific drug precise target to CAFs-rich pancreatic cancer. Additionally, TAT peptides enable liposomes penetration, delivering PFD for targeted anti-fibrotic therapy, reducing extracellular matrix generation and glycolysis, and enhancing JQ1 delivery and sensitivity. In conclusion, the findings indicate the tremendous potential of this CAFs-targeting liposomal delivery system in pancreatic cancer.
Collapse
Affiliation(s)
- Yin Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences Nanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Cheng Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Jiawei Liang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yixuan Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Haochen Su
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Jing Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Hao Wu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Shijin Xu
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Ziying Zhang
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Lei Wang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Xiaoping Zou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yun Zhu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Department of PharmacyNanjing Drum Tower HospitalDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Nanjing Medical Center for Clinical PharmacyNanjingJiangsu Province210008P. R. China
| | - Shu Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ying Lv
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| |
Collapse
|
12
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
13
|
Hu Z, Wang G, Zhang R, Yang Y, Wang J, Hu J, Reheman A. Sustained-release behavior and the antitumor effect of charge-convertible poly(amino acid)s drug-loaded nanoparticles. Drug Deliv Transl Res 2023:10.1007/s13346-023-01323-w. [PMID: 36913103 DOI: 10.1007/s13346-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Enhancing tissue permeability and achieving drug aggregation is the key to targeted tumor therapy. A series triblock copolymers of poly(ethylene glycol)-poly(L-lysine)-poly(L-glutamine) were synthesized by ring-opening polymerization, and charge-convertible nano-delivery system was constructed by loading doxorubicin (DOX) with 2-(hexaethylimide) ethanol on side chain. In normal environment (pH = 7.4), the zeta potential of the drug-loaded nanoparticle solution is negative, which is conducive to avoiding the identification and clearance of nanoparticles by the reticulo-endothelial system, while potential-reversal can be achieved in the tumor microenvironment, which effectively promotes cellular uptake. Nanoparticles could effectively reduce the distribution of DOX in normal tissues and achieve targeted aggregation at tumor sites, which can effectively improve the antitumor effect, while would not causing toxicity and damage to normal body.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yingyu Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Aikebaier Reheman
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| |
Collapse
|
14
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|