1
|
Zhang Q, Yan R, Xiong Y, Lei H, Du G, Pizzi A, Puangsin B, Xi X. Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance. Carbohydr Polym 2025; 347:122705. [PMID: 39486946 DOI: 10.1016/j.carbpol.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
Developing the most abundant cellulose resources in nature as wood adhesives is a challenging but significant work. In this study, an oxidized cellulose-hexamethylene diamine-urea (OCHU) resin adhesive, of high bonding performance, and excellent water resistance has been prepared. The cellulose was firstly enzymatically hydrolyzed to increase its solubility and expose more hydroxyl groups, then oxidized by sodium periodate (NaIO4) to generate a biological compound being rich of aldehyde groups. The OCHU adhesive was prepared by crosslinking oxidized cellulose (OC) with a synthetic reactive polyurea (HU) polymer, which was formed through the deamidation reaction between hexamethylenediamine (H) and urea (U). This adhesive exhibited a 24 h cold water soaking strength of 1.61 MPa, 3 h hot water (63 °C) strength of 1.05 MPa and a dry strength of 1.71 MPa. Compared to oxidized cellulose-hexamethylenediamine (OCH) adhesive, a significant increase of 60 % in this adhesive's wet strength. The Schiff base and addition reactions in the preparation were confirmed by XPS, solid-state NMR, and FTIR. This cellulose-based wood adhesive has great market competitiveness for mass production and application in the plywood industry, due to its excellent bonding properties.
Collapse
Affiliation(s)
- Qianyu Zhang
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material Science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Ranjun Yan
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material Science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Yangyang Xiong
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material Science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Hong Lei
- School of Chemistry and Material Engineering, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material Science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 88000 Epinal, France
| | - Buapan Puangsin
- Faculty of Forestry, Kasetsart University, Bangkok 10903, Thailand
| | - Xuedong Xi
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material Science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China.
| |
Collapse
|
2
|
Dai F, Liu H, Wang J, Lan K, Chen Y, Lv K, Lv D, Yang W, Zhao Y. Functionalized cellulose-based adhesive with epoxy groups having high humidity resistance performance. Int J Biol Macromol 2024; 279:135175. [PMID: 39214204 DOI: 10.1016/j.ijbiomac.2024.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sustainable and environment friendly natural-based adhesive has been considered as an optimum alternative of industrial adhesive which is non-renewable and harmful to health. Cellulose is the most abundant natural polymer in nature and has potential applications in the field of adhesives. However, the inherent hydrophilic nature of cellulose-based adhesive significantly challenges its use in high humidity environments. In this paper, a highly hydrophobic and anti-swelling cellulose-based adhesive was prepared by epoxy modification of microcrystalline cellulose (MCC). The simultaneous enhancement of adhesive and cohesive properties is achieved through the reaction of epoxy groups with the hydroxyl groups from the wood and adhesive during the hot-pressing process. Prepared adhesive has excellent properties in extremely humid environments. The dry bonding strength of the prepared adhesive reached 6.02 ± 0.26 MPa, while the wet bonding strength was 4.78 ± 0.21 MPa after immersed in water at 63 °C for 3 h. Furthermore, the bonding strength remained largely stable in 90 % atmospheric humidity. The adhesive has a certain universality, which can bond to substrates such as aluminium, iron, and glass. This study presents an innovative approach to the manufacturing of cellulose-based adhesive with enhanced bonding performance and exceptional water resistance.
Collapse
Affiliation(s)
- Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| | - Haochen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jing Wang
- School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composites Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Ke Lan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiran Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kepeng Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Dongyang Lv
- School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composites Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Wenhao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Ayaz P, Liu X, Yu Y, Xiang S, Zhao S, Fu F, Diao H, Liu X. A dialdehyde pullulan cross-linking strategy for immobilizing protamine onto silk fiber surfaces to achieve durable antibacterial function. Int J Biol Macromol 2024; 281:136301. [PMID: 39370066 DOI: 10.1016/j.ijbiomac.2024.136301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Covalent immobilization of antibacterial peptides (APs) onto silk protein-based materials has always been a challenge due to the lack of green and efficient macromolecular cross-linkers. Here, we proposed a dialdehyde polysaccharide cross-linker oxidized from pullulan for grafting a natural AP protamine (PM) onto silk fiber surface through a simple cold pad-batch process. The oxidized pullulan (OP) was linked to silk fiber surface through Schiff reaction and used for mediated cross-linking of PM also via Schiff base linkages. This modification introduced abundant PM guanidine groups on the fiber leading to much-desired antibacterial activity, and considerable improvement in the moisture transfer properties and shade depth. FTIR, XPS, SEM studies confirmed the presence of PM and the cross-linking structure between the polysaccharide and peptides on the fiber surfaces. The antibacterial activity imparted by this process was retained even after 20 washing and 50 rubbing cycles proving versatility and durability. Further, the process did not affect other critical silk properties such as appearance, tensile strength, biological safety, etc. Immobilization of PM onto silk fibers through this novel green polysaccharide cross-linker makes silk more appealing and usable and could also enlighten the attempts of cross-linking other protein materials.
Collapse
Affiliation(s)
- Pirah Ayaz
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyun Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shuangfei Xiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312030, China
| | - Shujun Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
6
|
Li W, Cheng G, Wang S, Jiang Y, Liu X, Huang Q. Bifunctional lignocellulose nanofiber hydrogel possessing intriguing pH-responsiveness and self-healing capability towards wound healing applications. Int J Biol Macromol 2024; 260:129398. [PMID: 38224814 DOI: 10.1016/j.ijbiomac.2024.129398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Lignocellulose nanofibers (LCNF) obtained from agricultural waste are potential candidates for enhancing composite materials because of their excellent mechanical properties, abundant groups and high biocompatibility. However, the application of LCNF has received limited attention to date from researchers in the healthcare field. Herein, based on the bifunctional group (carboxyl and aldehyde groups) modified LCNF (DCLCNF) and chitosan (CS), we developed a multifunctional bio-based hydrogel (CS-DCLCNF). The addition of lignin-containing DCLCNF strengthened the internal crosslinking and the intermolecular interaction of hydrogels, and the presence of lignin and carboxyl groups increased the mechanical strength of the hydrogel and the adsorption of aromatic drugs. Results revealed that the hydrogels exhibited self-healing, injectable, and high swelling rates. The hydrogels had favorable mechanical strength (G'max of ~16.60 kPa), and the maximum compressive stress was 24 kPa. Moreover, the entire tetracycline hydrochloride (TH) release process was slow and pH-responsive, because of the rich noncovalent and π-π interactions between DCLCNF and TH. The hydrogels also exhibited excellent biocompatibility and antibacterial properties. Notably, the wound healing experiment showed that the hydrogels were beneficial in accelerating wounds healing, which could heal completely in 13 days. Therefore, CS-DCLCNF hydrogels may have promising applications in drug delivery for wound healing.
Collapse
Affiliation(s)
- Wenwen Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China
| | - Gege Cheng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China
| | - Shuangju Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China
| | - Yan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiuyu Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China.
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China.
| |
Collapse
|