1
|
Su Y, Deng K, Liu Z, Zhang Z, Liu Z, Huang Z, Gao Y, Gao K, Fan Y, Zhang Y, Wang F. m6A modified pre-miR-503-5P contributes to myogenic differentiation through the activation of mTOR pathway. Int J Biol Macromol 2025; 294:139517. [PMID: 39756749 DOI: 10.1016/j.ijbiomac.2025.139517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
The post-transcriptional regulation of epigenetic modification is a hot topic in skeletal muscle development research. Both m6A modifications and miRNAs have been well-established as crucial regulators in skeletal muscle development. However, the interacting regulatory mechanisms between m6A modifications and miRNAs in skeletal muscle development remain unclear. In this study, miRNA sequencing analysis of goat primary myoblasts (GPMs) pre- and post-differentiation revealed that miR-503-5p was upregulated during myogenic differentiation, and its precursor was identified to contain m6A modification sites. Combined analysis of RIP, qRT-PCR and mRNA stability assay showed that Ythdf2 could recognize and bind the m6A site on pre-miR-503-5p, thereby facilitating the maturation of pre-miR-503-5p in an m6A-dependent manner. Moreover, the overexpression of miR-503-5p significantly inhibits the proliferation of GPMs, promotes myogenic differentiation, and enhances mitochondrial biogenesis while activating the mTOR pathway. However, the suppression of mTOR activity can effectively counteract the accelerated myogenic differentiation induced by miR-503-5p overexpression. Collectively, our results indicate that Ythdf2-dependent m6A modification facilitates the maturation of pre-miR-503-5p, thereby promoting skeletal muscle differentiation through the activation of the mTOR pathway. These insights lay a valuable foundation for further investigation into the complexities of skeletal muscle development and the potential implications of epigenetic regulation in this process.
Collapse
Affiliation(s)
- Yalong Su
- Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhilin Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zidi Huang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Gao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2024:S1525-0016(24)00802-5. [PMID: 39659016 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
3
|
Gao W, Miao X, Xu T. Wilms tumor 1-associated protein mediated m6A modification promotes osteogenic differentiation of stem cells from human exfoliated deciduous teeth. J Dent Sci 2024; 19:2305-2314. [PMID: 39347097 PMCID: PMC11437296 DOI: 10.1016/j.jds.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/20/2024] [Indexed: 10/01/2024] Open
Affiliation(s)
- Weiheng Gao
- Department of Emergency, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xixi Miao
- National Clinical Research Center for Child Health, Hangzhou, China
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Xu
- Department of Stomatology, Nanjing Geriatric Hospital, Nanjing, China
| |
Collapse
|
4
|
Liu Z, Deng K, Su Y, Zhang Z, Shi C, Wang J, Fan Y, Zhang G, Wang F. IGF2BP1-mediated the stability and protein translation of FGFR1 mRNA regulates myogenesis through the ERK signaling pathway. Int J Biol Macromol 2024; 280:135989. [PMID: 39326619 DOI: 10.1016/j.ijbiomac.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/21/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification of RNAs and plays a key regulatory role in various biological processes. As a member of the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) family, IGF2BP1 has recently demonstrated its ability to specifically bind m6A-modified sites within mRNAs and effectively regulate their mRNA stability. However, the precise roles of IGF2BP1 in mammalian skeletal muscle development, along with its downstream mRNA targets during myogenesis, have yet to be fully elucidated. Here, we observed that IGF2BP1 expression significantly decreased during myogenic differentiation. Knockdown of IGF2BP1 significantly inhibited myoblast proliferation while promoted myogenic differentiation. In contrast, IGF2BP1 overexpression robustly stimulated myoblast proliferation but suppressed their differentiation. Combined analysis of high-throughput sequencing and RNA stability assays revealed that IGF2BP1 can enhance fibroblast growth factor receptor 1 (FGFR1) mRNA stability and promote its translation in an m6A-dependent manner, thereby regulating its expression level and the Extracellular Signal-Regulated Kinase (ERK) pathway. Additionally, knockdown of FGFR1 rescued the phenotypic changes (namely increased cell proliferation and suppressed differentiation) induced by IGF2BP1 overexpression via attenuating ERK signaling. Taken together, our findings suggest that IGF2BP1 maintains the stability and translation of FGFR1 mRNA in an m6A-dependent manner, thereby inhibiting skeletal myogenesis through activation of the ERK signaling pathway. This study further enriches the understanding of the molecular mechanisms by which RNA methylation regulates myogenesis, providing valuable insights into the role of IGF2BP1-mediated post-transcriptional regulation in muscle development.
Collapse
Affiliation(s)
- Zhipeng Liu
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yalong Su
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Congyu Shi
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingang Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Zhang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
6
|
Zhang M, Zhai Y, An X, Li Q, Zhang D, Zhou Y, Zhang S, Dai X, Li Z. DNA methylation regulates RNA m 6A modification through transcription factor SP1 during the development of porcine somatic cell nuclear transfer embryos. Cell Prolif 2024; 57:e13581. [PMID: 38095020 PMCID: PMC11056710 DOI: 10.1111/cpr.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications play critical roles during somatic cell nuclear transfer (SCNT) embryo development. Whether RNA N6-methyladenosine (m6A) affects the developmental competency of SCNT embryos remains unclear. Here, we showed that porcine bone marrow mesenchymal stem cells (pBMSCs) presented higher RNA m6A levels than those of porcine embryonic fibroblasts (pEFs). SCNT embryos derived from pBMSCs had higher RNA m6A levels, cleavage, and blastocyst rates than those from pEFs. Compared with pEFs, the promoter region of METTL14 presented a hypomethylation status in pBMSCs. Mechanistically, DNA methylation regulated METTL14 expression by affecting the accessibility of transcription factor SP1 binding, highlighting the role of the DNA methylation/SP1/METTL14 pathway in donor cells. Inhibiting the DNA methylation level in donor cells increased the RNA m6A level and improved the development efficiency of SCNT embryos. Overexpression of METTL14 significantly increased the RNA m6A level in donor cells and the development efficiency of SCNT embryos, whereas knockdown of METTL14 suggested the opposite result. Moreover, we revealed that RNA m6A-regulated TOP2B mRNA stability, translation level, and DNA damage during SCNT embryo development. Collectively, our results highlight the crosstalk between RNA m6A and DNA methylation, and the crucial role of RNA m6A during nuclear reprogramming in SCNT embryo development.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
7
|
Yang L, Huang Z, Deng Y, Zhang X, Lv Z, Huang H, Sun Q, Liu H, Liang H, He B, Hu F. Characterization of the m6A/m1A/m5C/m7G-related regulators on the prognosis and immune microenvironment of glioma by integrated analysis of scRNA-seq and bulk RNA-seq data. J Gene Med 2024; 26:e3666. [PMID: 38391150 DOI: 10.1002/jgm.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.
Collapse
Affiliation(s)
- Longkun Yang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhicong Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Ying Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
| | - Zhonghua Lv
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Huang
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Qian Sun
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Liu
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fulan Hu
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Chengcheng L, Raza SHA, Zhimei Y, Sihu W, Shengchen Y, Aloufi BH, Bingzhi L, Zan L. Bta-miR-181d and Bta-miR-196a mediated proliferation, differentiation, and apoptosis in Bovine Myogenic Cells. J Anim Sci 2024; 102:skae142. [PMID: 38766769 PMCID: PMC11161902 DOI: 10.1093/jas/skae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Skeletal muscle is an important component of livestock and poultry organisms. The proliferation and differentiation of myoblasts are highly coordinated processes, which rely on the regulation of miRNA. MiRNAs are widely present in organisms and play roles in various biological processes, including cell proliferation, differentiation, and apoptosis. MiR-181d and miR-196a, identified as tumor suppressors, have been found to be involved in cell proliferation, apoptosis, directed differentiation, and cancer cell invasion. However, their role in beef cattle skeletal muscle metabolism remains unclear. In this study, we discovered that overexpression of bta-miR-181d and bta-miR-196a in Qinchuan cattle myoblasts inhibited proliferation and apoptosis while promoting myogenic differentiation through EDU staining, flow cytometry analysis, immunofluorescence staining, and Western blotting. RNA-seq analysis of differential gene expression revealed that after overexpression of bta-miR-181d and bta-miR-196a, the differentially expressed genes were mainly enriched in the PI3K-Akt and MAPK signaling pathways. Furthermore, the phosphorylation levels of key proteins p-AKT in the PI3K signaling pathway and p-MAPK in the MAPK signaling pathway were significantly decreased after overexpression of bta-miR-181d and bta-miR-196a. Overall, this study provides preliminary evidence that bta-miR-181d and bta-miR-196a may regulate proliferation, apoptosis, and differentiation processes in Qinchuan cattle myoblasts by affecting the phosphorylation status of key proteins in PI3K-Akt and MAPK-ERK signaling pathways.
Collapse
Affiliation(s)
- Liang Chengcheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, P.R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yang Zhimei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wang Sihu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yu Shengchen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Li Bingzhi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
9
|
Wang D, Zu Y, Sun W, Fan X. SETD1A-mediated Methylation of H3K4me3 Inhibits Ferroptosis in Non-small Cell Lung Cancer by Regulating the WTAPP1/WTAP Axis. Curr Med Chem 2024; 31:3217-3231. [PMID: 37231753 DOI: 10.2174/0929867330666230525143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION SETD1A is upregulated in non-small cell lung cancer (NSCLC) tissues. This study investigated the molecular mechanism of the SETD1A/WTAPP1/WTAP axis in NSCLC. METHODS Ferroptosis is a unique cell death mode driven by iron-reliant phospholipid peroxidation, which is regulated by multiple cellular metabolic pathways, including REDOX homeostasis, iron metabolism, mitochondrial activity and metabolism of amino acids, lipids and sugars. Thus, the levels of ferroptosis markers (MDA, SOD, GSH) were measured in vitro, and NSCLC cell behaviors were assessed. SETD1A-mediated H3K4me3 methylation was analyzed. SETD1A-exerted effects on ferroptosis and tumor growth in vivo were verified in nude mouse models. RESULTS SETD1A was highly expressed in NSCLC cells. Silencing SETD1A suppressed NSCLC cell proliferation and migration, inhibited MDA, and enhanced GPX4, SOD, and GSH levels. SETD1A elevated WTAP expression through WTAPP1 upregulation by mediating H3K4me3 methylation in the WTAPP1 promoter region. WTAPP1 overexpression partly averted the promotional effect of silencing SETD1A on NSCLC cell ferroptosis. WTAP interference abrogated the inhibitory effects of WTAPP1 on NSCLC cell ferroptosis. Silencing SETD1A facilitated ferroptosis and accelerated tumor growth in nude mice through the WTAPP1/WTAP axis. CONCLUSION SETD1A amplified WTAP expression through WTAPP1 upregulation by mediating H3K4me3 modification in the WTAPP1 promoter region, thus promoting NSCLC cell proliferation and migration and inhibiting ferroptosis.
Collapse
Affiliation(s)
- Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Xiaowu Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
10
|
Deng K, Liu Z, Li X, Ren C, Fan Y, Guo J, Li P, Deng M, Xue G, Yu X, Shi J, Zhang Y, Wang F. Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway. Int J Biol Macromol 2024; 254:127614. [PMID: 37884231 DOI: 10.1016/j.ijbiomac.2023.127614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Caifang Ren
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizhen Li
- Jiangsu Provincial Animal Husbandry General Station, Nanjing 210095, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xue
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Xiaorong Yu
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Jianfei Shi
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Huang X, Liu X, Lin J. Methylation of lncSHGL promotes adipocyte differentiation by regulating miR-149/Mospd3 axis. Cell Cycle 2023; 22:2361-2380. [PMID: 38057958 PMCID: PMC10802194 DOI: 10.1080/15384101.2023.2287367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity poses significant health risks and can negatively impact an individual's quality of life. The human obesity phenotype results from the differentiation of pre-adipocytes into adipocytes, which leads to hypertrophy and hyperplasia in adipose tissue. The molecular mechanisms by which long non-coding RNAs (lncRNAs) modulate adipocyte differentiation, a process implicated in obesity development, remain poorly characterized. A lncRNA which suppressed the hepatic gluconeogenesis and lipogenesis (lncSHGL) was newly identified. Our research aims to elucidate the functional role and mechanistic underpinnings of suppressor of lncSHGL in adipocyte differentiation. We observed that lncSHGL expression progressively diminished during 3T3-L1 differentiation and was downregulated in the liver and perirenal adipose tissue of ob/ob mice. lncSHGL acts as a molecular sponge for miR-149, with Mospd3 identified as a target of miR-149.Overexpression of lncSHGL and inhibition of miR-149 led to suppressed 3T3-L1 proliferation, decreased lipid droplet accumulation, and attenuated promoter activity of PPARγ2 and C/EBPα. These changes consequently resulted in reduced expression of Cyclin D1, LPL, PPARγ2, AP2, and C/EBPα, as well as inhibited the PI3K/AKT/mTOR signaling pathway. In contrast, lncSHGL suppression yielded opposing outcomes. Moreover, the effects of lncSHGL overexpression and miR-149 inhibition on reduced expression of Cyclin D1, LPL, PPARγ2, AP2, and C/EBPα were reversible upon miR-149 overexpression and Mospd3 suppression. These findings were further validated in vivo. We also discovered a significant increase in methylation levels during 3T3-L1 differentiation, with lncSHGL highly expressed in the presence of a methylation inhibitor. In conclusion. lncSHGL methylation facilitates adipocyte differentiation by modulating the miR-149/Mospd3 axis. Targeting lncSHGL expression may represent a promising therapeutic strategy for obesity-associated adipogenesis, particularly in the context of fatty liver disease.
Collapse
Affiliation(s)
- Xianwei Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Emergency Department, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| | - Xiong Liu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Emergency Department, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| | - Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Emergency Department, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| |
Collapse
|
12
|
Zhao S, Cao J, Sun Y, Zhou H, Zhu Q, Dai D, Zhan S, Guo J, Zhong T, Wang L, Li L, Zhang H. METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m 6A-Dependent Manner. Int J Mol Sci 2023; 24:14115. [PMID: 37762418 PMCID: PMC10531580 DOI: 10.3390/ijms241814115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.
Collapse
Affiliation(s)
- Sen Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Yanjin Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Helin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
14
|
Liu J, Zhang W, Luo W, Liu S, Jiang H, Liu S, Xu J, Chen B. Cloning of the RNA m 6A Methyltransferase 3 and Its Impact on the Proliferation and Differentiation of Quail Myoblasts. Vet Sci 2023; 10:vetsci10040300. [PMID: 37104455 PMCID: PMC10144998 DOI: 10.3390/vetsci10040300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Methyltransferase 3 (METTL3), which has been demonstrated to play a crucial role in a variety of biological processes, is the key enzyme for catalyzing m6A modification in RNA. However, the complete protein sequence of METTL3 in quail has not been annotated, and its function in skeletal muscle of quails remains unknown. In the current study, the full-length coding sequence of the quail METTL3 was obtained through the 3' rapid amplification of cDNA ends (3' RACE) and its homology with that of other species was predicted based on a generated phylogenetic tree. A Cell Counting Kit-8 assay and flow cytometry in a quail myoblast cell line (QM7) demonstrated that METTL3 promotes myoblast proliferation. The overexpression of METTL3 in QM7 cells significantly increased the expression levels of the myoblast differentiation markers myogenin (MYOG), myogenic differentiation 1 (MYOD1), and myocyte enhancer factor 2C (MEF2C), further demonstrating that METTL3 promotes myoblast differentiation. Additionally, transcriptome sequencing following METTL3 overexpression revealed that METTL3 controls the expression of various genes involved in RNA splicing and the regulation of gene expression, as well as pathways such as the MAPK signaling pathway. Taken together, our findings demonstrated that METTL3 plays a vital function in quail myoblast proliferation and differentiation and that the METTL3-mediated RNA m6A modification represents an important epigenetic regulatory mechanism in poultry skeletal muscle development.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wentao Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang 330032, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|