1
|
Wu D, Ye X, Hu W, Yu C, Zhu K, Pan H, Chen J, Cheng H, Chen S. Diverse domains of raspberry pectin: critical determinants for protecting against IBDs. Food Funct 2025; 16:657-672. [PMID: 39716902 DOI: 10.1039/d4fo03363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic conditions characterized by periods of intestinal inflammation and have become global diseases. Dietary pectins have shown protective effects on IBD models. However, the development of pectin-based diet intervention for IBD individuals requires knowledge of both the bioactive structural patterns and the mechanisms underlying diet-microbiota-host interactions. Here, dextran sulfate sodium (DSS) induced colitis mice were fed with different pectins with various domain compositions, including AG, P37, P55 and P85, in order to understand why different structural patterns function differently on colitis mouse models. The structural diversity of pectin manifests in the different percentages of the homogalacturonan (HG) backbone, Ara sidechains, and Gal sidechains. AG comprises only neutral sugar chains consisting of 14% Ara and 86% Gal, and P85 is a commercial HG pectin mainly composed of 85% HG. P37 and P55 were isolated from raspberry pulps with different domain ratios (P37 = 37% HG + 22% Ara + 32% Gal; P55 = 55% HG + 16% Ara + 18% Gal). Compared to the monotonous structure of AG and P85, the domain-diverse pectins P37 and P55 show superior protective effects against colitis through inhibiting the proliferation of the mucin-consuming bacteria and the pro-inflammatory microorganisms, potentiating the MUC2 expression and the mucus layer and regulating the gut-spleen axis. The HG structure promoted the proliferation of the mucin-degrading microbiota and potentiated mucus erosion. AG enhanced the mucus thickness but increased the growth of the pro-inflammatory microbiota. Our study revealed that the specific domain composition of pectic fibers was a key factor on which the diet-induced alterations in the gut microbiota and the intestinal barrier function highly depended.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Dai KY, Ding WJ, Li ZT, Liu C, Ji HY, Liu AJ. Comparison of structural characteristics and anti-tumor activity of two alkali extracted peach gum arabinogalactan. Int J Biol Macromol 2024; 279:135407. [PMID: 39245108 DOI: 10.1016/j.ijbiomac.2024.135407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Two polysaccharides, PGP-90 and PGP-100 (molecular weights of 7.59 × 102 kDa and 10.48 × 102 kDa, respectively), were isolated from Peach gum using alkaline electrolyte water as an extraction solution. Structural characterization showed that PGP-90 and PGP-100 are AG-II arabinogalactans with β-D-(1 → 6)-Galp as the main chain and 1 → 3 Araf and 1 → 5 Araf branched chains at O-3 and O-4 positions. Animal experiments showed that PGP-90 and PGP-100 significantly improved immune function, enhance the proliferative capacity of lymphocytes and phagocytosis of peritoneal macrophages, and regulated the ratio of lymphocyte subpopulations in S180 tumor-bearing mice. Meanwhile, PGP-90 and PGP-100 promoted the secretion of cytokines (TNF-α, IFN-γ, and IL-2) by activated macrophages and blocked apoptosis at the G1 phase, resulting in tumor suppression rates of 40.80 % and 46.30 % (100 mg/kg), respectively, with PGP-100 demonstrating stronger in vivo anti-tumor activity. The above experimental results indicate that Peach gum polysaccharides have the potential to be functional anti-tumor agents.
Collapse
Affiliation(s)
- Ke-Yao Dai
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen-Jie Ding
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen-Tong Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chao Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - An-Jun Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Chen J, Bi J, Li J, Zhou M. Understanding the two-stage degradation process of peach gum polysaccharide within ultrasonic field. Food Chem 2024; 451:139397. [PMID: 38678662 DOI: 10.1016/j.foodchem.2024.139397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the dynamic degradation process of peach gum polysaccharide (PGPS) within ultrasonic field. The results show that the molecular weight, intrinsic viscosity, and polydispersity of PGPS were rapidly reduced within the initial 30 min and then gradually decreased. The solubility of PGPS was drastically improved from 3.0% to 40.0-42.0% (w/w) after 120 min. The conformation of PGPS changed from an extended chain to a flexible random coil within initial time of ultrasound, and gradually tended to be compact spheres. The apparent viscosity of PGPS significantly decreased after 30 min, and PGPS solution exhibited a near-Newtonian fluid behavior. It is possible that these above changes are a result of random cleavage of the decrosslinking and the backbone of PGPS, resulting in the preservation of its primary structure. The results will provide a fundamental basis for orientation design and process control of ultrasonic degradation of PGPS.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinfeng Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jingyao Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mo Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhang J, Zhang H, Xiao Y, Wang H, Zhang H, Lu W. Interspecific differences and mechanisms of Lactobacillus-derived anti-inflammatory exopolysaccharides. Int J Biol Macromol 2024; 263:130313. [PMID: 38395278 DOI: 10.1016/j.ijbiomac.2024.130313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Accumulating evidence has revealed the anti-inflammatory properties of Lactobacillus-derived exopolysaccharides (EPSs). However, interspecific differences among these Lactobacillus-derived anti-inflammatory EPSs have not been investigated. Cell experiments showed that Limosilactobacillus fermentum, Lacticaseibacillus rhamnosus, and Lactiplantibacillus plantarum-derived EPSs exhibited excellent anti-inflammatory efficacy in vitro. Subsequently, we used Lactobacillus-derived EPSs to treat colitis in mice. There was no significant difference in EPS's repair of the intestinal barrier from the five Lactobacillus species. However, Ligilactobacillus salivarius-derived EPSs and L. plantarum-derived EPSs more potently reduced proinflammatory cytokines (TNF-α, IL-1β, IL-6, TNF-γ, and IL-17), increasing IL-10 concentrations in the colon. Lactobacillus-derived EPS moieties from five species regulate intestinal bacteria at the strain level. Immunofluorescence staining revealed that owing to the different infiltration and polarization effects of Lactobacillus-derived EPSs on macrophages, the in vitro and in vivo anti-inflammatory effects of Lactobacillus-derived EPSs were inconsistent. The structure-activity relationship showed that Lactobacillus-derived EPSs with high fructose content had excellent anti-inflammatory activity in vivo. The results mentioned above revealed that the anti-inflammatory activity of Lactobacillus-derived EPSs had interspecific variability, and the mechanism of anti-inflammatory action in vitro and in vivo was different.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Huiqin Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Silva FCO, Malaisamy A, Cahú TB, de Araújo MIF, Soares PAG, Vieira AT, Dos Santos Correia MT. Polysaccharides from exudate gums of plants and interactions with the intestinal microbiota: A review of vegetal biopolymers and prediction of their prebiotic potential. Int J Biol Macromol 2024; 254:127715. [PMID: 37918599 DOI: 10.1016/j.ijbiomac.2023.127715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Polysaccharides in plant-exuded gums are complex biopolymers consisting of a wide range of structural variability (linkages, monosaccharide composition, substituents, conformation, chain length and branching). The structural features of polysaccharides confer the ability to be exploited in different industrial sectors and applications involving biological systems. Moreover, these characteristics are attributed to a direct relationship in the process of polysaccharide enzymatic degradation by the fermentative action in the gut microbiota, through intrinsic interactions connecting bacterial metabolism and the production of various metabolites that are associated with regulatory effects on the host homeostasis system. Molecular docking analysis between bacterial target proteins and arabinogalactan-type polysaccharide obtained from gum arabic allowed the identification of intermolecular interactions provided bacterial enzymatic mechanism for the degradation of several arabinogalactan monosaccharide chains, as a model for the study and prediction of potential fermentable polysaccharide. This review discusses the main structural characteristics of polysaccharides from exudate gums of plants and their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Francisca Crislândia Oliveira Silva
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Arunkumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Thiago Barbosa Cahú
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), University City, CEP 21941-913 Rio de Janeiro, RJ, Brazil
| | - Maria Isabela Ferreira de Araújo
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Paulo Antônio Galindo Soares
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Angélica Thomaz Vieira
- Department of Biochemistry and Immunology, Laboratory of Microbiota and Immunomodulation (LMI), Federal University of Minas Gerais (UFMG), Antonio Carlos, 6627 - Pampulha, CEP 30.161-970 Belo Horizonte, MG, Brazil
| | - Maria Tereza Dos Santos Correia
- Department of Biochemistry, Glycoprotein Laboratory (BIOPROT), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
7
|
Li C, Jiao Y, Shen S, Zhao W, Zhang Q, Zhang S. Chaenomeles sinensis polysaccharide and its carboxymethylated derivative alleviate dextran sulfate sodium-induced ulcerative colitis via suppression of inflammation and oxidative stress. Biomed Pharmacother 2023; 169:115941. [PMID: 38006619 DOI: 10.1016/j.biopha.2023.115941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023] Open
Abstract
Chaenomeles sinensis fruit polysaccharide (CSP) and carboxymethylated CSP (CSP-M) were prepared using ultrasound extraction and the sodium hydroxide-chloroacetic acid method. Structural analysis revealed that both CSP and CSP-M mainly consisted of glucose, arabinose, rhamnose, glucuronic acid, galactose, and xylose, and the introduction of carboxymethyl did not damage the polymer chain of CSP. In vivo studies verified that both CSP and CSP-M could remarkably alleviate the symptoms of ulcerative colitis (UC) mice and reduce intestinal epithelial cell depletion, along with the infiltration of inflammatory cells in colon tissue, by mediating the expression of myeloperoxidase (MPO), inflammatory factors [tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6], and oxidative stress factors [malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and nitric oxide (NO)]. Most importantly, the introduction of carboxymethyl significantly enhanced the anti-UC activity of CSP, confirming the efficacy of carboxymethylation as a method to enhance the biological activities of CSP, thereby suggesting the potential of CSP-M as a therapeutic option for UC.
Collapse
Affiliation(s)
- Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yukun Jiao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shumin Shen
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenchang Zhao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Yang M, Tao L, Wang Z, Li L, Luo J, Pai K, Li W, Zhao C, Sheng J, Tian Y. The Mechanism of Peach Gum Polysaccharide Preventing UVB-Induced Skin Photoaging by Regulating Matrix Metalloproteinanse and Oxidative Factors. Molecules 2023; 28:molecules28104104. [PMID: 37241845 DOI: 10.3390/molecules28104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure to ultraviolet light can cause oxidative damage and accelerate skin aging and is one of the main causes of skin aging. Peach gum polysaccharide (PG) is a natural edible plant component that has many biological activities, such as regulating blood glucose and blood lipids and improving colitis, as well as antioxidant and anticancer properties. However, there are few reports on the antiphotoaging effect of peach gum polysaccharide. Therefore, in this paper, we study the basic composition of the raw material peach gum polysaccharide and its ability to improve UVB-induced skin photoaging damage in vivo and in vitro. The results show that peach gum polysaccharide is mainly composed of mannose, glucuronic acid, galactose, xylose, and arabinose, and its molecular weight (Mw) is 4.10 × 106 g/mol. The results of the in vitro cell experiments show that PG could significantly alleviate UVB-induced apoptosis of human skin keratinocytes, promote cell growth repair, reduce the expression of intracellular oxidative factors and matrix metal collagenase, and improve the extent of oxidative stress repair. Moreover, the results from the in vivo animal experiments showed that PG could not only effectively improve the phenotype of UVB-induced photoaged skin in model mice but also significantly improve their oxidative stress status, regulate the contents of ROS and the levels of SOD and CAT, and repair the oxidative skin damage induced by UVB in vivo. In addition, PG improved UVB-induced photoaging-mediated collagen degradation in mice by inhibiting the secretion of matrix metalloproteinases. The above results indicate that peach gum polysaccharide has the ability to repair UVB-induced photoaging and may be used as a potential drug and antioxidant functional food to resist photoaging in the future.
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Junyi Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kuannu Pai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weitong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- PuEr University, Puer 665000, China
| |
Collapse
|