1
|
Yadav MK, Song JH, Vasquez R, Lee JS, Kim IH, Kang DK. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria-A Systematic Review. Foods 2024; 13:3687. [PMID: 39594102 PMCID: PMC11594216 DOI: 10.3390/foods13223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Exopolysaccharides (EPSs) are large-molecular-weight, complex carbohydrate molecules and extracellularly secreted bio-polymers released by many microorganisms, including lactic acid bacteria (LAB). LAB are well known for their ability to produce a wide range of EPSs, which has received major attention. LAB-EPSs have the potential to improve health, and their applications are in the food and pharmaceutical industries. Several methods have been developed and optimized in recent years for producing, extracting, purifying, and characterizing LAB-produced EPSs. The simplest method of evaluating the production of EPSs is to observe morphological features, such as ropy and mucoid appearances of colonies. Ethanol precipitation is widely used to extract the EPSs from the cell-free supernatant and is generally purified using dialysis. The most commonly used method to quantify the carbohydrate content is phenol-sulfuric acid. The structural characteristics of EPSs are identified via Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy. The molecular weight and composition of monosaccharides are determined through size-exclusion chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. The surface morphology of EPSs is observed via scanning electron microscopy and atomic force microscopy, whereas thermal characteristics are determined through thermogravimetry analysis, derivative thermogravimetry, and differential scanning calorimetry. In the present review, we discuss the different existing methods used for the detailed study of LAB-produced EPSs, which provide a comprehensive guide on LAB-EPS preparation, critically evaluating methods, addressing knowledge gaps and key challenges, and offering solutions to enhance reproducibility, scalability, and support for both research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (M.K.Y.); (J.H.S.); (R.V.); (J.S.L.); (I.H.K.)
| |
Collapse
|
2
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
de Brito LP, da Silva EC, Lins LF, Severo de Medeiros R, Silva FCO, Pastrana L, Cavalcanti IDL, de Britto Lira-Nogueira MC, Cavalcanti MTH, Porto ALF. Optimization, structural characterization, and biological applications of exopolysaccharide produced by Enterococcus faecium KT990028. Int J Biol Macromol 2024; 282:136926. [PMID: 39486715 DOI: 10.1016/j.ijbiomac.2024.136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The aim of this study was to select the best exopolysaccharide (EPS) producer among the Enterococcus strains to optimize, characterize, and evaluate its biological properties. Among the eleven strains, Enterococcus faecium KT990028 was selected, and the production conditions were optimized: 16.3 % (w/v) sucrose, 0.70 % (w/v) yeast extract, 8.3 % (w/v) reconstituted skimmed milk, at 38 °C in 15 h of incubation, producing 2.880 g/L of EPS. High performance anion exchange chromatography (HPAEC) analysis revealed that the molecular weight was 166.98 kDa. HPAEC, spectroscopy (FTIR), and nuclear magnetic resonance (1H NMR) analyses revealed that the EPS was a heteropolysaccharide composed of galactose (37.74 %), rhamnose (19.79 %), arabinose (17.71 %), glucose (9.50 %), fucose (7.93 %), and mannose (7.33 %). Scanning electron microscopy showed a three-dimensional microstructure in the form of decompressed plates, with wrinkles, and pores. By means of dynamic light scattering (DLS), the EPS showed an average size varying from 135.25 ± 10.56 nm and 410.60 ± 45.20 nm, as the concentration was increased from 0.5 mg/mL to 2.0 mg/mL, respectively. X-ray diffraction revealed that the EPS has an amorphous and crystalline nature, while thermogravimetric analysis indicated stability up to 400 °C. The antioxidant effect (5 mg/mL) against DPPH, ABTS, OH, and O2 was 64.50 ± 0.71 %, 47.50 ± 0.10 %, 68.36 ± 0.59 %, and 44.83 ± 0.86 %, respectively. It was also able to inhibit and biofilm disruption of Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 6057 and had an antimicrobial effect from 50 mg/mL for the strains of against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Listeria monocytogenes ATCC 19117, Staphylococcus aureus ATCC 6538, and Enterococcus faecalis ATCC 6057. Cell cytotoxicity carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the EPS was safe and promoted the proliferation of Vero cells. Thus, the results indicated that the EPS from E. faecium KT990028 is a promising functional biopolymer for possible applications in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Leandro Paes de Brito
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil.
| | - Elaine Cristina da Silva
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Leandro Fragoso Lins
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Rosália Severo de Medeiros
- Federal University of Campina Grande, Av. Universitária, s/n - Santa Cecilia, 58708-110, Patos, Paraíba, Brazil
| | | | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330, Braga, Portugal
| | - Iago Dillion Lima Cavalcanti
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | | | | | - Ana Lúcia Figueiredo Porto
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil; Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|
4
|
Gaur SS, Annapure US. Optimization of exopolysaccharide production from the novel Enterococcus species, using statistical design of experiment. Prep Biochem Biotechnol 2024:1-12. [PMID: 39302656 DOI: 10.1080/10826068.2024.2402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Exopolysaccharide (EPS) producing novel strains of Enterococcus previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, E.villorum SB-2 and E.rivorum S22-3, were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the E.rivorum S22-3 as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from E.villorum SB-2 and 7.74 g/l (2.5 times the initial production) from E.rivorum S22-3, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.
Collapse
Affiliation(s)
- Shivani Singh Gaur
- Department of Food and Engineering Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S Annapure
- Department of Food and Engineering Technology, Institute of Chemical Technology, Mumbai, India
- Institute of Chemical Technology, Jalna, India
| |
Collapse
|
5
|
Mohal MM, Sraboni FS, Islam S, Zaman S, Uddin MS, Saleh MA. Functional characterization and biotechnological applications of exopolysaccharides produced by newly isolated Enterococcus hirae MLG3-25-1. Int Microbiol 2024:10.1007/s10123-024-00587-7. [PMID: 39222179 DOI: 10.1007/s10123-024-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.
Collapse
Affiliation(s)
- Mst Mamotaz Mohal
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farzana Sayed Sraboni
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Chegini P, Salimi F, Pirbodagh ZA, Zare EN. Antilisterial and antioxidant exopolysaccharide from Enterococcus faecium PCH.25 isolated from cow butter: characterization and probiotic potential. Arch Microbiol 2024; 206:389. [PMID: 39210205 DOI: 10.1007/s00203-024-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Exopolysaccharides produced by lactic acid bacteria have gained attention for their potential health benefits and applications in functional foods. This study explores the isolation and characterization of a novel exopolysaccharide-producing strain from dairy products. The aim was to evaluate its probiotic potential and investigate the properties of the produced exopolysaccharide. A strain identified as Enterococcus faecium PCH.25, isolated from cow butter, demonstrated exopolysaccharide production. The study's novelty lies in the comprehensive characterization of this strain and its exopolysaccharide, revealing unique properties with potential applications in food, cosmetic, and pharmaceutical industries. The E. faecium PCH.25 strain exhibited strong acid tolerance, with a 92.24% viability rate at pH 2 after 2 h of incubation. It also demonstrated notable auto-aggregation (85.27% after 24 h) and co-aggregation abilities, antibiotic sensitivity, and absence of hemolytic activity, suggesting its probiotic potential. The exopolysaccharide produced by this strain showed bactericidal activity (MIC and MBC = 1.8 mg/ml) against Listeria monocytogenes and antioxidant properties (22.8%). Chemical analysis revealed a heteropolysaccharide composed of glucose and fructose monomers, with various functional groups contributing to its bioactivities. Physical characterization of the exopolysaccharide indicated thermal stability up to 270 °C, a negative zeta-potential (-27 mV), and an average particle size of 235 nm. Scanning electron microscopy and energy dispersive X-ray analysis revealed a smooth, nonporous structure primarily composed of carbon and oxygen, with an amorphous nature. These findings suggest that the exopolysaccharide from E. faecium PCH.25 has potential as a natural antibacterial and antioxidant polymer for use in functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Parvin Chegini
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
- Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
7
|
Wang Z, Li H, Wang P, Zhu J, Yang Z, Liu Y. Comparison of anaerobic co-digestion of vacuum toilet blackwater and kitchen waste under mesophilic and thermophilic conditions: Reactor performance, microbial response and metabolic pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121725. [PMID: 38971070 DOI: 10.1016/j.jenvman.2024.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.6 and 1:4.5 for mesophilic and thermophilic optimal reactors, with methane production of 449.04 mL/g VS and 411.90 mL/g VS, respectively. Microbial communities showed significant differences between the reactors under different temperatures. For bacteria, increasing BW:KW ratio significantly promoted Defluviitoga enrichment (1.1%-9.5%) under thermophilic condition. For Archaea, the increase in BW:KW ratio promoted the enrichment of Methanosaeta (8.6%-56.4%) in the mesophilic reactor and Methanothermobacter (62.0%-89.2%) in the thermophilic reactor. The analysis of the key enzymes showed that, acetoclastic methanogenic pathway performed as the dominant under mesophilic condition, with high abundance of Acetate-CoA ligase (EC:6.2.1.1) and Pyruvate synthase (EC:1.2.7.1). Hydrogenotrophic methanogenic pathway was the main pathway in the thermophilic reactors, with high abundance of Formylmethanofuran dehydrogenase (EC:1.2.99.5).
Collapse
Affiliation(s)
- Ziang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Pingbo Wang
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 310000, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Ziyi Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Zheng Y, Yang K, Shen J, Chen X, He C, Xiao P. Huangqin Tea Total Flavonoids-Gut Microbiota Interactions: Based on Metabolome and Microbiome Analysis. Foods 2023; 12:4410. [PMID: 38137214 PMCID: PMC10742805 DOI: 10.3390/foods12244410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Huangqin tea (HQT), a Non-Camellia Tea derived from the aerial parts of Scutellaria baicalensis, is widely used in the north of China. The intervention effects of HQT on intestinal inflammation and tumors have been found recently, but the active ingredient and mechanism of action remain unclear. This study aimed to investigate the interactions between the potential flavonoid active components and gut microbiota through culture experiments in vitro combined with HPLC-UV, UPLC-QTOF-MS, and 16S rDNA sequencing technology. The results showed that the HQT total flavonoids were mainly composed of isocarthamidin-7-O-β-D-glucuronide, carthamidin-7-O-β-D-glucuronide, scutellarin, and others, which interact closely with gut microbiota. After 48 h, the primary flavonoid glycosides transformed into corresponding aglycones with varying degrees of deglycosylation. The composition of the intestinal microbiota was changed significantly. The beneficial bacteria, such as Enterococcus and Parabacteroides, were promoted, while the harmful bacteria, such as Shigella, were inhibited. The functional prediction results have indicated notable regulatory effects exerted by total flavonoids and scutellarin on various pathways, including purine metabolism and aminoacyl-tRNA biosynthesis, among others, to play a role in the intervention of inflammation and tumor-related diseases. These findings provided valuable insights for further in-depth research and investigation of the active ingredients, metabolic processes, and mechanisms of HQT.
Collapse
Affiliation(s)
- Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kailin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jie Shen
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
| | - Xiangdong Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (Y.Z.); (K.Y.); (X.C.); (P.X.)
- Key Laboratory of Bioactive Substances and Resources Utilisation of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| |
Collapse
|
9
|
Martins ACS, Medeiros GKVDV, de Oliveira SPA, de Albuquerque TMR, Sampaio KB, Dos Santos Lima M, do Nascimento YM, da Silva EF, Tavares JF, da Silva MS, de Souza EL, de Oliveira MEG. Unrevealing the in vitro impacts of Cereus jacamaru DC. cladodes flour on potentially probiotic strains, selected bacterial populations, and metabolic activity of human intestinal microbiota. Food Res Int 2023; 174:113658. [PMID: 37981375 DOI: 10.1016/j.foodres.2023.113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.
Collapse
Affiliation(s)
- Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | | | | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE 56302-100, Brazil
| | - Yuri Mangueira do Nascimento
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | |
Collapse
|