1
|
Khadem Sadigh M, Sayyar Z, Mohammadi MA, Baharlounezhad F. Controlling the drug delivery efficiency of chitosan-based systems through silver nanoparticles and oxygen plasma. Int J Biol Macromol 2025; 294:139407. [PMID: 39756727 DOI: 10.1016/j.ijbiomac.2024.139407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Today, curcumin's therapeutic properties are used in drug delivery systems. In this work, chitosan (CS) /Montmorillonite (MMT) hydrogels were synthesized to improve the performance of curcumin molecules. According to the results, drug release characteristics of CS/MMT/curcumin highly depend on the pH of the environment and properties of Ag nanoparticles. Moreover, curcumin and Ag nanoparticles were placed under the influence of oxygen plasma. Our results indicate that oxygen plasma, as a simple, clean, and environment-friendly method, can be used as an effective method for controlling the efficiency of drug release and antibacterial characteristics of curcumin molecules in hydrogels. In this case, by increasing the exposure time of the samples under the influence of oxygen plasma, their antibacterial properties and drug release efficiency are significantly enhanced.
Collapse
Affiliation(s)
- M Khadem Sadigh
- Department of Laser and Optics engineering, University of Bonab, Bonab, Iran.
| | - Z Sayyar
- Department of Chemical Engineering, University of Bonab, Bonab, Iran
| | - M A Mohammadi
- Faculty of physics, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
2
|
Bu K, Huang D, Zhang H, Xu K, Zhu C. Ultrasonic-microwave technique promotes the physicochemical structure of hydrogel and its release characterization of curcumin in vitro. Food Chem 2024; 451:139389. [PMID: 38670023 DOI: 10.1016/j.foodchem.2024.139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
In this study, soybean protein isolate and hawthorn pectin were mixed to prepare binary hydrogels using ultrasound and microwave techniques. Moderate treatment can not only significantly improve the mechanical strength of the hydrogel, but also increase the tightness of the internal cross-linking. The strengthening of interactions (hydrogen bonds, hydrophobic interactions, and disulfide bonds) was the main reason for this trend. Especially, the ultrasonic-microwave (80 s) treatment hydrogel possessed excellent hardness (33.426 N), water-holding capacity (98.26%), elasticity (G' = 1205 Pa), and a more homogeneous and denser microstructure. In addition, the hydrogel minimized the extent of curcumin loss (21.23%) after 5 weeks of storage. In general, the ultrasonic-microwave technique could significantly promote the physicochemical structure and curcumin bioaccessibility of hydrogels, which showed excellent market prospects in the food industry.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hao Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
3
|
Porras JD, Diaz IL, Perez LD. Synthesis of PEGylated amphiphilic block copolymers with pendant linoleic moieties by combining ring-opening polymerization and click chemistry. Biopolymers 2024; 115:e23582. [PMID: 38680100 DOI: 10.1002/bip.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.
Collapse
Affiliation(s)
- Julian D Porras
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Ivonne L Diaz
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Leon D Perez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
4
|
Maurya R, Misro L, Boini T, Radhakrishnan T, Nair PG, Gaidhani SN, Jain A. Transforming Medicinal Oil into Advanced Gel: An Update on Advancements. Gels 2024; 10:342. [PMID: 38786260 PMCID: PMC11121385 DOI: 10.3390/gels10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
The present study delves into the evolution of traditional Ayurvedic oil preparations through innovative strategies to develop advanced gel formulations, aiming at amplifying their therapeutic efficacy. Ayurvedic oils have a rich historical context in healing practices, yet their conversion into contemporary gel-based formulations represents a revolutionary approach to augment their medicinal potential. The primary objective of this transformation is to leverage scientific advancements and modern pharmaceutical techniques to enhance the application, absorption, and overall therapeutic impact of these traditional remedies. By encapsulating the essential constituents of Ayurvedic oils within gel matrices, these novel strategies endeavor to improve their stability, bioavailability, and targeted delivery mechanisms. This review highlights the fusion of traditional Ayurvedic wisdom with cutting-edge pharmaceutical technology, paving the way for more effective and accessible utilization of these revered remedies in modern healthcare.
Collapse
Affiliation(s)
- Rahul Maurya
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Lakshminarayana Misro
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thirupataiah Boini
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thulasi Radhakrishnan
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Parvathy G. Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
5
|
Zhang X, Huang Y, Huang Z. Editorial on Special Issue "Design and Optimization of Pharmaceutical Gels". Gels 2024; 10:38. [PMID: 38247762 PMCID: PMC10815103 DOI: 10.3390/gels10010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The efficacy of many bioactive agents, including drugs, food supplements, and vaccines, is limited because of their poor chemical stability, low water solubility, and low oral bioavailability [...].
Collapse
Affiliation(s)
- Xuejuan Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| |
Collapse
|
6
|
Omidian H, Wilson RL, Chowdhury SD. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023; 9:596. [PMID: 37623051 PMCID: PMC10453486 DOI: 10.3390/gels9080596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
7
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
8
|
Taokaew S, Kaewkong W, Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023; 9:277. [PMID: 37102889 PMCID: PMC10138304 DOI: 10.3390/gels9040277] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade. The recent progress in the applications of drug delivery, tissue engineering, disease treatments, and biosensors are reviewed. Current challenges and future development direction of the chitosan-based hydrogels for pharmaceutical and biomedical applications are prospected.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
9
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|