1
|
Zhuo T, Qi JR, Liao JS, Wei HY, Xiao R. Physicochemical and rheological properties of konjac glucomannan and its mixed gels with κ-carrageenan: Effect of deacetylation by L-arginine. Food Chem 2025; 483:144243. [PMID: 40209367 DOI: 10.1016/j.foodchem.2025.144243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Konjac glucomannan (KGM) is a natural functional polysaccharide, and deacetylation (removing acetyl groups) impacts its physicochemical and gel properties. In order to study KGM's gel properties and explore new deacetylation modifiers, three deacetylated konjac glucomannan (DKGM) with different deacetylation degrees (DD, 17.51 %, 35.41 %, and 54.52 %) were prepared using L-arginine. Results showed that L-arginine deacetylated and retained the main structure and high molecular weight of KGM. Solubility decreased from 85.38 % to 81.17 %, transparency decreased from 38.52 % to 35.73 %, water absorbing and swelling slowed down, and molecular morphology changed from chain structures to micelle-like aggregates after deacetylation. Dynamic viscoelastic analysis showed that deacetylation facilitated the formation of the entangled network structure of KGM. The strength of konjac glucomannan and κ-carrageenan mixed gels increased after deacetylation, and this enhancement was mainly through hydrogen bonds and hydrophobic interactions. These findings will provide theoretical guidance for the application of KGM.
Collapse
Affiliation(s)
- Ting Zhuo
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jun-Ru Qi
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou, 510640, PR China; Lemon (Qingyuan City) Biotechnology Co. Ltd., Qingyuan, 511517, PR China
| | - Hui-Ying Wei
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Rong Xiao
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
2
|
Parameswari E, Paulsebastian S, Kalaiselvi P, Ilakiya T, Davamani V, Suganya K, Karchiyappan T, Bharani A. Sustainable management of mixed soil contaminants through integrated biosystems: Efficacy of biochar and humic acid amendments in marigold phytoremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:494. [PMID: 40164848 DOI: 10.1007/s10661-025-13914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
A study investigated the fate and transport of mixed contaminants-chromium (Cr), cadmium (Cd), and perfluorooctanoic acid (PFOA)-in soil using an integrated biosystem. Known concentrations of contaminants and organic amendments (biochar and humic acid) were introduced into unpolluted soil to assess degradability, mobility, bioavailability, and phytoremediation potential using marigold plants. Contaminants reduced plant physiological traits, including photosynthetic rate (33%), stomatal conductance (58%), and transpiration rate (74%) compared to control plants. Root traits and the effectiveness of biochar and humic acid were evaluated using "GiA Roots" software. Root architecture varied significantly due to contamination, with seven traits analyzed through principal component analysis (PCA). PC1 accounted for 79% variance, highlighting amendment effects, while PC2 (21%) grouped mixed contaminant treatments, indicating that biochar and humic acid enhanced root growth in contaminated soil. Additionally, untreated contaminated soil produced the root growth inhibitor 2-methyl cortisol, identified via GC/MS analysis. Scanning electron microscope analysis showed that roots in control soil had well-defined stele structures, whereas contaminated soil led to severe structural collapse. Post-harvest soil analysis revealed that humic acid treatments reduced Cr, Cd, and PFOA by 48.5%, 40.1%, and 88%, respectively, while biochar treatments achieved reductions of 68.3%, 52.7%, and 92%. These results highlight the effectiveness of biochar and humic acid in reducing contamination through sorptive properties and chemical binding. Applying biochar at 5 t ha⁻1 or humic acid at 20 kg ha⁻1, combined with phytoremediation, effectively mitigated soil toxicity, improving crop productivity by lowering contaminant levels.
Collapse
Affiliation(s)
- Ettiyagounder Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Selvaraj Paulsebastian
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Periyasamy Kalaiselvi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Veeraswamy Davamani
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kathirvel Suganya
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Alagirisamy Bharani
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
3
|
Wang H, Fan T, Zeng Z, Chen Z, Lu M, Zhou M, Qin X, Liu X. Use of ozone oxidation in combination with deacetylation for improving the structure and gelation properties of konjac glucomannan. Food Chem 2024; 453:139599. [PMID: 38788640 DOI: 10.1016/j.foodchem.2024.139599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
In this study, oxidized deacetylated konjac glucomannans with different degrees of oxidation were prepared by a combination of deacetylation and ozone oxidation. Carboxyl groups were found to be introduced into the modified konjac glucomannan while acetyl groups were removed. The backbone, branched chains, and crystal structure of modified konjac glucomannan were not significantly affected. The whiteness was enhanced to 97-99 % and the thermal degradation temperature was up to 250 °C after modification. The solubility of the modified konjac glucomannan (oxidized for 60 min) was significantly increased to 84.56 % (p < 0.05), while its viscosity and swelling power were notably decreased owing to the changes in molecular weight (from 106 to 104) and functional groups. Rheological analysis showed that oxidized deacetylated konjac glucomannan has the ability to form soft-textured gels and the potential to develop dysphagia foods. Future studies should focus on the gelation mechanisms of oxidized deacetylated konjac glucomannan.
Collapse
Affiliation(s)
- Haoyuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tianqin Fan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhilong Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Manman Lu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zheng Y, Liu Q, Luo H, Zheng J, Li W. Effect of pretreatment with electron beam irradiation on the deacetylation efficiency of konjac glucomannan and its structural, physicochemical and gel properties. Int J Biol Macromol 2024; 276:133887. [PMID: 39019354 DOI: 10.1016/j.ijbiomac.2024.133887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Due to its emulsifying and thickening properties, konjac glucomannan (KGM) is widely used in the food, medicine, and materials industries. Nevertheless, its high viscosity and significant water absorption limit its application range. Therefore, electron beam (e-beam) irradiation pretreatment was carried out to improve the deacetylation efficiency of KGM, and the physicochemical and gel properties of KGM were investigated. The results show that e-beam irradiation and deacetylation decrease the water absorption, solubility, transparency, molecular weight, and viscosity of KGM. Conversely, the moisture content, thermal stability, and water-binding capacity increase. FTIR and X-ray diffraction analysis revealed no significant changes in the chemical and crystalline structure of KGM before and after modification. However, modification weakens the intermolecular interaction of KGM hydrosols, which affects their rheology. Furthermore, deacetylation improves the mechanical properties and water retention capacity of KGM gels. Overall, the e-beam irradiation pretreatment provides a method to increase the efficiency of KGM deacetylation and improve the physical and chemical properties of KGM, thus expanding its potential applications in the food and chemical industries, among others.
Collapse
Affiliation(s)
- Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayu Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Li D, Li M, Wang L, Zhang J, Wang X, Nie J, Ma G. The synergetic effect of alginate-derived hydrogels and metal-phenolic nanospheres for chronic wound therapy. J Mater Chem B 2024; 12:2571-2586. [PMID: 38363109 DOI: 10.1039/d3tb02685j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Management of diabetic wounds presents a global health challenge due to elevated levels of ROS in the wound microenvironment, persistent dysregulation of inflammation modulation, and limitations in commercially available dressings. Addressing this issue, we have developed a pH-responsive and glucose-sensitive multifunctional hydrogel dressing that dynamically responds to the wound microenvironment and enables on-demand drug release. The dressing incorporates a matrix material based on aminophenylboronic acid-functionalized alginate and a polyhydroxy polymer, alongside an enhancer phase consisting of self-assembled metal-phenol coordination nanospheres formed by tannic acid and iron ions. Using the dynamic borate ester bonds and catechol-metal ion coordination bonds, the dressing exhibits remarkable shape adaptability, self-healing capability, tissue adhesiveness, antioxidant activity, and photothermal responsiveness, without additional curatives or crosslinking agents. As a wound dressing, it elicits macrophage polarization towards an anti-inflammatory phenotype while maintaining long-lasting antimicrobial effects. In a diabetic mouse model of full-thickness wound infections, it effectively mitigated inflammation and vascular damage, significantly expediting the wound healing process with a commendable 97.7% wound closure rate. This work provides a new direction for developing multifunctional smart hydrogel dressings that can accelerate diabetic wound healing for human health.
Collapse
Affiliation(s)
- Donghai Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Mengzhu Li
- China Academy of Aerospace Science and Innovation, Beijing 100176, P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jie Zhang
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
| | - Xiaoyue Wang
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
6
|
Bu N, Zhou N, Cao G, Mu R, Pang J, Ma C, Wang L. Konjac glucomannan/carboxymethyl chitosan film embedding gliadin/casein nanoparticles for grape preservation. Int J Biol Macromol 2023; 249:126131. [PMID: 37543273 DOI: 10.1016/j.ijbiomac.2023.126131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|