Raj V, Chun KS, Lee S. State-of-the-art advancement in tara gum polysaccharide (Caesalpinia spinosa) modifications and their potential applications for drug delivery and the food industry.
Carbohydr Polym 2024;
323:121440. [PMID:
37940305 DOI:
10.1016/j.carbpol.2023.121440]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
In preference to synthetic or petroleum-based materials, current research in food and pharmaceutical industries has focused on the development of biodegradable and sustainable materials due to their low toxicity, and biocompatibility. In particular, the natural water-soluble polysaccharide tara gum (Caesalpinia spinosa) has been widely used as a food-grade and drug-delivery agent due to its biodegradability, and biocompatibility. Moreover, owing to its easily modifiable hydroxy groups, tara gum, and its derivatives have been employed as food packaging films and pharmaceutical materials. In the present critical review, facile grafting methods of tara gum are reviewed, and an up-to-date comprehensive application of tara gum polysaccharides revealed their uses in pH-sensitive food packaging. In addition, modified tara gum materials exhibited improved drug delivery applications with biocompatible properties. The non-toxic nature and non-Newtonian, pseudoplastic rheological properties as well as the synergistic behavior of tara gum with other polysaccharides explore its further industrial applications in several fields. Additionally, several approaches for improving tara gum for use as a stabilizer and thickener for food items, and monitoring food spoilage, have provided notable customized characteristics. In brief, its many advantages make tara gum polysaccharide a promising material for applications in the food and pharmaceutical industries.
Collapse