1
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
2
|
Li B, Dettmer U. Interactions of alpha-synuclein with membranes in Parkinson's disease: Mechanisms and therapeutic strategies. Neurobiol Dis 2024; 201:106646. [PMID: 39181187 DOI: 10.1016/j.nbd.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, is marked by the presence of Lewy bodies and Lewy neurites, neuronal lesions containing large amounts of the synaptic protein alpha-synuclein (αS). While the underlying mechanisms of disease progression in PD remain unclear, increasing evidence supports the importance of interactions between αS and cellular membranes in PD pathology. Therefore, understanding the αS-membrane interplay in health and disease is crucial for the development of therapeutic strategies. In this review, we (1) discuss key scenarios of pathological αS-membrane interactions; (2) present in detail therapeutic strategies explicitly reported to modify αS-membrane interactions; and (3) introduce additional therapeutic strategies that may involve aspects of interfering with αS-membrane interaction. This way, we aim to provide a holistic perspective on this important aspect of disease-modifying strategies for PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Baoyi Li
- Wycombe Abbey, Buckinghamshire HP11 1PE, UK
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Xia P, Cao Y, Zhao Q, Li H. Energy gap of conformational transition related with temperature for the NACore of α-synuclein. Phys Chem Chem Phys 2024; 26:23062-23072. [PMID: 39175373 DOI: 10.1039/d4cp02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pathological aggregation of α-synuclein (α-syn) into amyloid fibrils is a major feature of Parkinson's disease (PD). The self-assembly of α-syn is mainly governed by a non-amyloid-β component core (NACore). However, the effects of concentrations and temperatures on their conformational transition remain unclear. To answer this question, we investigated the aggregation kinetics of NACore oligomers in silico by performing several independent all-atom molecular dynamics simulations. The simulation results show that tetramers are more prone to form β-sheets at 300 K than dimers and octamers. We also found that the NACore oligomers had higher β-sheet and β-barrel contents at 310 K. The inter-chain hydrophobic interactions, the backbone hydrogen bonding, the residue-residue interactions between V70-V77 as well as V77-V77 play important roles in the aggregation tendency of NACore octamers at 310 K. Interestingly, the energy gap analysis revealed that the conformational transition of NACore oligomers from intermediate states (β-barrel conformation) to stable structures (β-sheet layers) was dependent on the temperatures. In short, our study provides insight into the kinetic and thermodynamic mechanisms of the conformational transition of NACore at different concentrations and temperatures, contributing to a better understanding of the aggregation process of α-syn in Parkinson's disease.
Collapse
Affiliation(s)
- Pengxuan Xia
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuanming Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
4
|
Shen J, Xie J, Ye L, Mao J, Sun S, Chen W, Wei S, Ruan S, Wang L, Hu H, Wei J, Zheng Y, Xi Z, Wang K, Xu Y. Neuroprotective effect of green tea extract (-)-epigallocatechin-3-gallate in a preformed fibril-induced mouse model of Parkinson's disease. Neuroreport 2024; 35:421-430. [PMID: 38526966 PMCID: PMC11060057 DOI: 10.1097/wnr.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.
Collapse
Affiliation(s)
- Jianing Shen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Junhua Xie
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Liyuan Ye
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Jian Mao
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Shihao Sun
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Weiwei Chen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Sijia Wei
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Sisi Ruan
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Linhai Wang
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hangcui Hu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Jingjing Wei
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Yao Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhouyan Xi
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Ke Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou
- Beijing Life Science Academy (BLSA), Beijing, China
| |
Collapse
|
5
|
Li X, Zhang Y, Wang Y, Zhang S, Zhang L. Molecular Insights into the Inhibition and Disaggregation Effects of EGCG on Aβ40 and Aβ42 Cofibrillation. J Phys Chem B 2024; 128:1843-1853. [PMID: 38359305 DOI: 10.1021/acs.jpcb.3c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides play a pivotal role in the pathogenesis of Alzheimer's disease (AD). Aβ40 and Aβ42, the two primary isoforms of Aβ, can not only self-aggregate into homogeneous aggregates but also coaggregate to form mixed fibrils. Epigallocatechin-3-gallate (EGCG), a prominent tea polyphenol, has shown the capability to prevent the self-aggregation of Aβ40 and Aβ42 peptides and disaggregate their homogeneous fibrils. However, its effects on the cofibrillation of Aβ40 and Aβ42 have not yet been explored. Here, we employed molecular dynamic simulations to investigate the effects of EGCG on the coaggregation of Aβ40 and Aβ42, as well as on their mixed fibril. Our findings indicated that EGCG effectively inhibits the codimerization of Aβ40 and Aβ42 primarily by impeding the interchain interaction between the two isoforms. The key binding sites for EGCG on Aβ40 and Aβ42 are the polar residues and aromatic residues, engaging in hydrogen-bond , π-π, and cation-π interactions with EGCG. Additionally, EGCG disaggregates the Aβ40-Aβ42 mixed fibril by reducing its long-range interaction through similar binding sites and interactions as those between EGCG and Aβ40-Aβ42 heterodimers. Our research reveals the comprehensive inhibition and disaggregation effects of EGCG on the cofibrillation of Aβ isoforms, which provides further support for the development of EGCG as an effective antiaggregation agent for AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Yuetian Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
6
|
Li X, Zhang Y, Yang Z, Zhang S, Zhang L. The Inhibition Effect of Epigallocatechin-3-Gallate on the Co-Aggregation of Amyloid-β and Human Islet Amyloid Polypeptide Revealed by Replica Exchange Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:1636. [PMID: 38338914 PMCID: PMC10855639 DOI: 10.3390/ijms25031636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the fundamental molecular mechanism underlying their pathological association. The green tea extract epigallocatechin-3-gallate (EGCG) has been extensively demonstrated to inhibit the amyloid aggregation of Aβ and hIAPP proteins. However, its potential role in amyloid co-aggregation has not been thoroughly investigated. In this study, we employed the enhanced-sampling replica exchange molecular dynamics simulation (REMD) method to investigate the effect of EGCG on the co-aggregation of Aβ and hIAPP. We found that EGCG molecules substantially diminish the β-sheet structures within the amyloid core regions of Aβ and hIAPP in their co-aggregates. Through hydrogen-bond, π-π and cation-π interactions targeting polar and aromatic residues of Aβ and hIAPP, EGCG effectively attenuates both inter-chain and intra-chain interactions within the co-aggregates. All these findings indicated that EGCG can effectively inhibit the co-aggregation of Aβ and hIAPP. Our study expands the potential applications of EGCG as an anti-amyloidosis agent and provides therapeutic options for the pathological association of amyloid misfolding disorders.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| |
Collapse
|
7
|
Khatooni Z, Akhtari K, Wilson HL. Conformational dynamics of α-synuclein and study of its intramolecular forces in the presence of selected compounds. Sci Rep 2023; 13:19020. [PMID: 37923923 PMCID: PMC10624887 DOI: 10.1038/s41598-023-46181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023] Open
Abstract
Protein misfolding and aggregation play crucial roles in amyloidogenic diseases through the self-assembly of intrinsically disordered proteins (IDPs) in type II diabetes (T2D), Alzheimer's disease (AD) and Parkinson's disease (PD). PD is the most common neurodegenerative disorder after AD, and is associated with the loss of dopaminergic signaling, which causes motor and nonmotor signs and symptoms. Lewy bodies and Lewy neurites are common pathological hallmarks of PD that are mainly composed of aggregates of disordered α-synuclein (α-Syn). There have been many efforts to develop chemical compounds to prevent aggregation or facilitate disruption of the aggregates. Furthermore, the roles and interactions of many compounds have yet to be revealed at the atomistic level, especially their impacts on the dynamics and chain-chain interactions of the oligomers, which are of interest in this study. The conformational diversity and detailed interactions among homo-oligomer chains of α-Syn are not fully discovered; identifying these might help uncover a practical approach to developing a potent therapy. In this study, we used an in-silico investigation to address the conformational diversity of α-Syn oligomer. The roles of several point mutations in protein aggregation in PD are known; we take this further by evaluating the interaction energies and contributions of all residues in stability and residue-chain interactions. In this study, we docked chemical derivatives of three compounds with high drug-likeness properties to evaluate the roles of our ligands in the conformational dynamicity of the oligomers, with emphasis on intramolecular forces. Free energy evaluation of the modeled inter and intramolecular interactions through MD simulation shows effective interaction and binding between α-Syn and our compounds. However, we find that they do not significantly disrupt the chain-chain interactions, compared to unliganded simulation.
Collapse
Affiliation(s)
- Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- School of Public Health, Vaccinology & Immunotherapeutics Program, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
8
|
Wang G, Zhu L, Wu X, Qian Z. Influence of Protonation on the Norepinephrine Inhibiting α-Synuclein 71-82 Oligomerization. J Phys Chem B 2023; 127:7848-7857. [PMID: 37683121 DOI: 10.1021/acs.jpcb.3c03270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) is closely linked to the massive presence of Lewy vesicles and Lewy axons in the cytoplasm of neurons, mainly consisting of α-synuclein (αS). Norepinephrine (NE), whose secretion can be increased by exercise, has been demonstrated to prevent the fibrillation of αS and to break down the mature αS fibrils. In this work, we focus on the influence of protonation on the inhibitory ability of NE by using amyloid core fragment αS71-82 as a template. All-atom replica-exchange molecular dynamics simulations (accumulating to 33.6 μs) in explicit water were performed to explore the inhibitory effect of protonated and nonprotonated NE on αS oligomerization. Our results show that NE/NE+ can lead to a significant decrease in β-sheet content with increasing temperature, while isolated αS maintains relatively higher β-sheet conformations until 363 K, implying that both NE and NE+ can lower the critical temperature required for αS fibril decomposition. NE and NE+ also lead to the formation of less compact αS oligomers by preventing the backbone hydrogen bonds and the side-chain packing. The protonation would affect the binding affinity, interaction modes, and binding intensity of NE with αS. Interesting, NE and NE+ have a distinct binding free energy in the electrostatic and solvation terms, which mostly counter each other and produce a weak binding intensity with αS. Our work contributes to a better understanding of the inhibitory mechanism of NE and NE+ on αS oligomerization relevant to PD pathogenesis, which may provide clues for the design of antiamyloid medicine.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shang Xing School, 6 Shangli Road, Shenzhen 518100, Guangdong, China
| | - Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| |
Collapse
|
9
|
Mohammed S, Russo I, Ramazzina I. Uncovering the Role of Natural and Synthetic Small Molecules in Counteracting the Burden of α-Synuclein Aggregates and Related Toxicity in Different Models of Parkinson's Disease. Int J Mol Sci 2023; 24:13370. [PMID: 37686175 PMCID: PMC10488152 DOI: 10.3390/ijms241713370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A proteostasis network represents a sophisticated cellular system that controls the whole process which leads to properly folded functional proteins. The imbalance of proteostasis determines a quantitative increase in misfolded proteins prone to aggregation and elicits the onset of different diseases. Among these, Parkinson's Disease (PD) is a progressive brain disorder characterized by motor and non-motor signs. In PD pathogenesis, alpha-Synuclein (α-Syn) loses its native structure, triggering a polymerization cascade that leads to the formation of toxic inclusions, the PD hallmark. Because molecular chaperones represent a "cellular arsenal" to counteract protein misfolding and aggregation, the modulation of their expression represents a compelling PD therapeutic strategy. This review will discuss evidence concerning the effects of natural and synthetic small molecules in counteracting α-Syn aggregation process and related toxicity, in different in vitro and in vivo PD models. Firstly, the role of small molecules that modulate the function(s) of chaperones will be highlighted. Then, attention will be paid to small molecules that interfere with different steps of the protein-aggregation process. This overview would stimulate in-depth research on already-known small molecules or the development of new ones, with the aim of developing drugs that are able to modify the progression of the disease.
Collapse
Affiliation(s)
- Salihu Mohammed
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, Via Europa 11, 25123 Brescia, Italy;
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Biostructures and Biosystems National Institute (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
10
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
12
|
Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. J Phys Chem B 2023; 127:4050-4060. [PMID: 37126408 DOI: 10.1021/acs.jpcb.3c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into oligomers and amyloid fibrils is closely related to Alzheimer's disease (AD). Aβ40 and Aβ42, as two most prominent isoforms of Aβ peptides, can cross-interact with each other and form co-aggregates, which affect the progression of the disease. However, the molecular determinants underlying Aβ40 and Aβ42 cross-interaction and the structural details of their co-oligomers remain elusive. Herein, we performed all-atom explicit-solvent replica exchange molecular dynamics simulations on Aβ40-Aβ42 heterogeneous and Aβ40/Aβ42 homogeneous dimer systems to dissect the co-aggregation mechanisms of the two isoforms. Our results show that the interpeptide main-chain interaction of Aβ40-Aβ42 is stronger than that of Aβ40-Aβ40 and Aβ42-Aβ42. The positions of hotspot residues in heterodimers and homodimers display high similarity, implying similar molecular recognition sites for both cross-interaction and self-interaction. Contact maps of Aβ40-Aβ42 heterodimers reveal that residue pairs crucial for cross-interaction are mostly located in the C-terminal hydrophobic regions of Aβ40 and Aβ42 peptides. Conformational analysis shows that Aβ40 and Aβ42 monomers can co-assemble into β-sheet-rich heterodimers with shorter β-sheets than those in homodimers, which is decremental to monomer addition. Similar molecular recognition sites and β-sheet distribution of Aβ40 and Aβ42 peptides are observed in heterodimers and homodimers, which may provide the molecular basis for the two isoforms' co-aggregation and cross-seeding. Our work dissects the co-aggregation mechanisms of Aβ40 and Aβ42 peptides at the atomic level, which will help for in-depth understanding of the cross-talk between the two Aβ isoforms and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Sahadevan R, Binoy A, Vechalapu SK, Nanjan P, Sadhukhan S. In situ global proteomics profiling of EGCG targets using a cell-permeable and Click-able bioorthogonal probe. Int J Biol Macromol 2023; 237:123991. [PMID: 36907293 DOI: 10.1016/j.ijbiomac.2023.123991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Despite possessing a wide spectrum of biological activities, molecular targets of EGCG remain elusive and as a result, its precise mode of action is still unknown. Herein, we have developed a novel cell-permeable and Click-able bioorthogonal probe for EGCG, YnEGCG for in situ detection and identification of its interacting proteins. The strategic structural modification on YnEGCG allowed it to retain innate biological activities of EGCG (IC50 59.52 ± 1.14 μM and 9.07 ± 0.01 μM for cell viability and radical scavenging activity, respectively). Chemoproteomics profiling identified 160 direct EGCG targets, with H:L ratio ≥ 1.10 from the list of 207 proteins, including multiple new proteins that were previously unknown. The targets were broadly distributed in various subcellular compartments suggesting a polypharmacological mode of action of EGCG. GO analysis revealed that the primary targets belonged to the enzymes that regulate key metabolic processes including glycolysis and energy homeostasis, also the cytoplasm (36 %) and mitochondria (15.6 %) contain the majority of EGCG targets. Further, we validated that EGCG interactome was closely associated with apoptosis indicating its role in inducing toxicity in cancer cells. For the first time, this in situ chemoproteomics approach could identify a direct and specific EGCG interactome under physiological conditions in an unbiased manner.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sai K Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Pandurangan Nanjan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala, India.
| |
Collapse
|