1
|
Lv J, Kong X, Liu W, Su Z, Luo F, Suo F, Wang Z, Cao L, Liu Z, Li M, Xiao W. Rhodiola crenulata polysaccharide alleviates dextran sulfate sodium-induced ulcerative colitis in mice by repairing the intestinal barrier and regulating the intestinal microecology. Front Pharmacol 2025; 16:1519038. [PMID: 40206066 PMCID: PMC11979201 DOI: 10.3389/fphar.2025.1519038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Polysaccharides, vital biological macromolecules ubiquitous in organisms, have garnered attention as potential therapeutic candidates for ulcerative colitis (UC). However, the therapeutic potential of Rhodiola crenulata polysaccharides (RCP) in UC remains largely unexplored. The RCP was prepared by boiling water extraction, 80% alcohol precipitation, membrane separation, and D101 macroporous resin purification. The monosaccharide composition of RCP (Mw = 67.848 kDa) includes mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose, with a molar ratio of 0.22:1:0.07:7.03:2.88:0.64:4.12. In vivo experiments have shown that RCP can improve DSS induced weight loss in UC mice, decrease disease activity index (DAI), alleviate histopathological changes in colon tissue, and suppress the levels of pro-inflammatory cytokine IL-6 and MPO activity. Immunohistochemical results showed that essential tight junction proteins such as occludin, claudin1, and ZO-1 were upregulated, improving the integrity of the intestinal barrier. Importantly, RCP regulated the abundance of the intestinal microbiota by reducing the Firmicutes-to-Bacteroidetes ratio (F/B), increasing beneficial bacteria such as Muribaculaceae and Bifidobacterium, decreasing harmful bacteria including Erysipelotrichaceae, Faecalibaculum, Lachnospiraceae_unclassified, Parabacteroides, and Ruminiclostridium_9. Additionally, it enhanced the restoration of acetic acid, propionic acid, isovaleric acid, and valeric acid to maintain intestinal SCFA levels, thereby restoring the intestinal microecology. Therefore, RCP has excellent therapeutic effects on UC and is worthy of further drug development and clinical treatment.
Collapse
Affiliation(s)
- Jia Lv
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Kong
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wenjun Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhenzhen Su
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Fengshou Luo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Fengtai Suo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxuan Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
2
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Dai Y, Wang Z, Wang Z, Dong M, Wang D, Xia X. Stabilizing effect of Leuconostoc mesenteroides Lm10 produced dextran in situ on stirred soy yogurt: Structure-function relationship. Carbohydr Polym 2025; 348:122948. [PMID: 39567159 DOI: 10.1016/j.carbpol.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Stirred soy yogurt as a dairy alternative is widely accepted among consumers, but its poor stability has been an urgent problem. We found that Leuconostoc mesenteroides Lm10 produced dextran reduced water mobility and improved the water holding capacity of stirred soy yogurt, especially with over 4 % sucrose added which could completely prevent whey separation. With the increase of dextran content, the particle size of stirred soy yogurt was significantly decreased, accompanied by the improvement of viscoelastic behaviors and resistance to deformation. Moreover, dextran had a stronger ability to maintain the stability of stirred soy yogurt in comparison with gelatin, xanthan and carrageenan during cold storage. The structure-function attributes of this dextran were also revealed. Dextransucrase Gtf1674 was responsible for synthesizing dextran during soy yogurt fermentation. The produced dextran was mainly composed of α-1,6 glycosidic linkages with a low-branched degree and high molecular weight. After stirring, the dextran entangled with soy protein and formed small aggregates with a dense gel structure and small pores, causing them prone to binding with water and reducing the syneresis. This study suggested the benefits of dextran produced by Leuc. mesenteroides Lm10 in stirred soy yogurt, and facilitated developing the "clean label" plant-derived products.
Collapse
Affiliation(s)
- Yiqiang Dai
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daoying Wang
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Gao W, Xu Y, Chen W, Wu J, He Y. A systematic review of advances in preparation, structures, bioactivities, structural-property relationships, and applications of Polyporus umbellatus polysaccharides. Food Chem X 2025; 25:102161. [PMID: 39885918 PMCID: PMC11780138 DOI: 10.1016/j.fochx.2025.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Polyporus umbellatus (Pers.) Fries is an edible fungus species belonging to the Polygonaceae family. Polysaccharides, the predominant bioactive compounds in P. umbellatus, have been widely used due to its abundant nutritional and medicinal benefits. Since the first unrefined P. umbellatus polysaccharides (PUPs) was obtained in 1973, they have been studied for half a century, and are currently gaining increasing attention. These research findings are however quite fragmented. In this review, current relevant research data regarding techniques for the preparation (extraction, fractionation, and purification) and structural characterization (molecular weight, monosaccharide composition, glycosidic bond types, and structural features) of PUPs covering a period of over 50 years are reviewed. Furthermore, this review comprehensively examines the functional properties, structure-activity relationships, and current applications of PUPs. Future research should prioritize standardized preparation process, reliable quality control and specific mechanisms to further advance the utilization and development of PUPs and their related products.
Collapse
Affiliation(s)
- Wei Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yongbin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Weihao Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
5
|
Ren S, Liu H, Sang Q, Sun Y, Li L, Chen W. Polyporus umbellatus, A Precious Rare Fungus With Good Pharmaceutical and Food Value. Eng Life Sci 2025; 25:e202400048. [PMID: 39834535 PMCID: PMC11742960 DOI: 10.1002/elsc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Polyporus umbellatus is a rare porous fungus that exhibits notable pharmacological activities. Particularly, due to its diuretic properties, it is considered an important source of targeted drugs for the treatment of kidney disease. Extensive research has been conducted on this fungus, focusing not only on its challenging cultivation techniques but also on its diverse array of medicinal ingredients, including polysaccharides and steroids. These active compounds demonstrate considerable variability and exhibit a wide range of medicinal properties. As a result, extracting, separating, and purifying these active compounds has become a subject of interest. This review aims to provide a comprehensive overview of the types, structures, and physicochemical properties of these active compounds. Additionally, the medicinal effects of P. umbellatus are thoroughly examined, offering valuable insights into the utilization of its resources and the rational development of medical fungi.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangHebeiChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangHebeiChina
| | - Hua Liu
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Qing Sang
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Yifan Sun
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Liyan Li
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Wenjie Chen
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangHebeiChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangHebeiChina
| |
Collapse
|
6
|
Dai Y, Ge Z, Wang Z, Wang Z, Xu W, Wang D, Dong M, Xia X. Effects of water-soluble and water-insoluble α-glucans produced in situ by Leuconostoc citreum SH12 on physicochemical properties of fermented soymilk and their structural analysis. Int J Biol Macromol 2024; 267:131306. [PMID: 38574904 DOI: 10.1016/j.ijbiomac.2024.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
This study investigated the effect of in situ produced water-soluble α-glucan (LcWSG) and water-insoluble α-glucan (LcWIG) from Leuconostoc citreum SH12 on the physicochemical properties of fermented soymilk. α-Glucans produced by Leuc. citreum SH12 improved water-holding capacity, viscosity, viscoelasticity and texture of fermented soymilk. Gtf1365 and Gtf836 of the five putative glucansucrases were responsible for synthesizing LcWSG and LcWIG during soymilk fermentation, respectively. Co-fermentation of soymilk with Gtf1365 and Gtf836 and non-exopolysaccharide-producing Lactiplantibacillus plantarum D1031 indicated that LcWSG effectively hindered the whey separation of fermented soymilk by increasing viscosity, while LcWIG improved hardness, springiness and accelerated protein coagulation. Fermented soymilk gel formation was mainly based on hydrogen bonding and hydrophobic interactions, which were promoted by both LcWSG and LcWIG. LcWIG has a greater effect on α-helix to β-sheet translation in fermented soymilk, causing more rapid protein aggregation and thicker cross-linked gel network. Structure-based exploration of LcWSG and LcWIG from Leuc. citreum SH12 revealed their distinct roles in the physicochemical properties of fermented soymilk due to their different ratio of α-1,6 and α-1,3 glucosidic linkages and various side chain length. This study may guide the application of the water-soluble and water-insoluble α-glucans in fermented plant protein foods for their quality improvement.
Collapse
Affiliation(s)
- Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiwen Ge
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
7
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
8
|
Kei N, Wong VWS, Lauw S, You L, Cheung PCK. Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods 2023; 12:3279. [PMID: 37685211 PMCID: PMC10486587 DOI: 10.3390/foods12173279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease nowadays. Currently, there is no officially approved drug to treat NAFLD. In view of the increasing global prevalence of NAFLD and an absence of treatments, the development of effective treatments is of utmost importance. β-glucan, a natural bioactive polysaccharide, has demonstrated hepatoprotective effects in NAFLD prevention and treatment. This review solely focuses on gathering the published preclinical animal studies that demonstrated the anti-liver injury, anti-steatotic, anti-inflammatory, anti-fibrotic, and antioxidant activities of β-glucan. The impact of β-glucan on gut microbiota and its metabolites including short-chain fatty acids and bile acids as the underlying mechanism for its bioactive beneficial effect on NAFLD is also explored. Given the limited knowledge of β-glucan on anti-fibrotic activity, bile acid metabolism, and gut microbiota function, additional relevant research is highly encouraged to lay a solid foundation for the use of food-derived β-glucan as a functional food for NAFLD. It is envisaged that further investigation of food-derived β-glucan in human clinical studies should be carried out for its wider utilization.
Collapse
Affiliation(s)
- Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| |
Collapse
|
9
|
Wang J, Yang J, Tang Z, Yu Y, Chen H, Yu Q, Zhang D, Yan C. Curculigo orchioides polysaccharide COP70-1 stimulates osteogenic differentiation of MC3T3-E1 cells by activating the BMP and Wnt signaling pathways. Int J Biol Macromol 2023; 248:125879. [PMID: 37473884 DOI: 10.1016/j.ijbiomac.2023.125879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The crude polysaccharide CO70 isolated from Curculigo orchioides could alleviate ovariectomy-induced osteoporosis in rats. To clarify the bioactive components, a new heteropolysaccharide (COP70-1) was purified from CO70 in this study, which was consisted of β-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, and →4,6)-α-D-Galp-(1→. COP70-1 significantly promoted the osteoblastic differentiation of MC3T3-E1 cells through improving alkaline phosphatase activity, the deposition of calcium as well as up-regulating the expression of osteogenic markers (RUNX2, OSX, BSP, OCN, and OPN). Furthermore, COP70-1 stimulated the expression of critical transcription factors of the BMP and Wnt pathways, including BMP2, p-SMAD1, active-β-catenin, p-GSK-3β, and LEF-1. In addition, LDN (BMP pathway inhibitor) and DKK-1 (Wnt pathway inhibitor) suppressed the COP70-1-induced osteogenic differentiation of MC3T3-E1 cells. Therefore, COP70-1 was one of the bioactive constituents of C. orchioides for targeting osteoblasts to treat osteoporosis by triggering BMP/Smad and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongbo Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|