1
|
Rai SK, Bhatiya S, Dhiman R, Mittal D, Yadav SK. Development and Characterization of a Tunable Metal-Organic Framework (MOF) for the Synthesis of a Rare Sugar D-Tagatose. Appl Biochem Biotechnol 2025; 197:384-397. [PMID: 39136914 DOI: 10.1007/s12010-024-05013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
D-tagatose is a valuable rare sugar with potential health benefits such as antiobesity, low-calorie, prebiotic, and anticancer. However, its production is mainly depending on chemical or enzymatic catalysis. Herein, a cobalt-based metal-organic framework (MOF) was developed at room temperature in an aqueous system using a self-assembly method. The L-arabinose isomerase (L-AI) was immobilized into this unique MOF by an in situ encapsulation process. The morphology and structural aspects of the MOF preparations were characterized by different analytical techniques such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FT-IR), and X-Ray diffraction (XRD). Moreover, thermogravimetric analysis (TGA) suggested the high thermal stability of the L-AI@MOF. Significantly, the immobilized catalyst exhibited enhanced catalytic efficiency (kcat/Km) of 3.22 mM-1 s-1 and improved turnover number (kcat) of 57.32 s-1. The L-AI@MOF efficiently catalyzes the synthesis of D-tagatose from D-galactose up to the equilibrium level (~ 50%) of isomerization in heterogeneous catalysis. Interestingly, L-AI@MOF was found stable and reusable for more than five cycles without the requirement of additional metal ions during catalysis. Thus, L-AI stabilized in the MOF system demonstrated a higher catalytic activity and potential guidance for the sustainable synthesis of rare sugar D-tagatose.
Collapse
Affiliation(s)
- Shushil Kumar Rai
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, 140306, India
| | - Simran Bhatiya
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Rishu Dhiman
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, 140306, India
| | - Divya Mittal
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, 140306, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, 140306, India.
- CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 6 Palampur, Himachal Pradesh, 176061, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India.
| |
Collapse
|
2
|
Guo Y, Cao H, Di W, Gao X. Imprinted membrane-covalent organic framework platform for efficient label-free visual detection of Listeria monocytogenes and Salmonella typhimurium in food samples. Anal Chim Acta 2024; 1320:343002. [PMID: 39142781 DOI: 10.1016/j.aca.2024.343002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Rapid and sensitive detection of foodborne pathogens in food plays a crucial role in controlling outbreaks of foodborne diseases, of which Listeria monocytogenes and Salmonella typhimurium are representative and notable pathogens. Thus, it's of great importance to achieve the effective detection of these pathogens. However, the most common detection methods (culture-based technique, Polymerase Chain Reaction and immunological methods) have disadvantages that cannot be ignored, such as time-consuming, laborious, complex sample preparation process, and the possibility of cross-reaction. Hence, it is essential to develop a facile detection method for the pathogens with high sensitivity and specificity to avoid the above-mentioned disadvantages. RESULTS We report a label-free visual platform for the simultaneous capture and detection of Listeria monocytogenes and Salmonella typhimurium. For the first time, we have prepared polydimethylsiloxane-Chromotrope 2R membrane which serves as the substrate for bacterial capture and enrichment through the formation of specific recognition sites. The positively charged Pt-covalent organic framework combines with the pathogens through surface charge interaction, thereby the label-free sandwich platform is formed. Remarkable peroxidase activity of Pt-covalent organic framework converts the conversion of bacterial quantity into amplified color signal by catalyzing 3,3',5,5'-Tetramethylbenzidine to oxidized 3,3',5,5'-Tetramethylbenzidine. The platform demonstrates the capability to identify two representative food-borne pathogens within a time frame of 100 min, exhibiting high sensitivity and excellent specificity without the interference from non-target bacteria. The limit of detection of the visual platform toward Listeria monocytogenes and Salmonella typhimurium was 1.61 CFU mL-1 and 1.31 CFU mL-1, respectively. And the limit of quantification toward Listeria monocytogenes and Salmonella typhimurium was 4.94 CFU mL-1 and 2.47 CFU mL-1, respectively. The relative standard derivations of the visual platform for both bacteria were lower than 4.9 %. Furthermore, our proposed platform has obtained reliable and satisfactory results on analyzing diverse food samples. SIGNIFICANCE This research expands the application of a label-free platform combined with unlabeled nanocomponents in the rapid isolation and detection of diverse of food-borne pathogens. The platform possesses the advantages of simple operation and real-time monitoring, without complicated sample pretreatment process. The whole detection process can realize the simultaneous monitoring of Listeria monocytogenes and Salmonella typhimurium within 100 min. Furthermore, it is also of reference significance for the detection of other common pathogens.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, 250000, Shandong Province, PR China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, 250000, Shandong Province, PR China.
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, 250000, Shandong Province, PR China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, 250000, Shandong Province, PR China.
| |
Collapse
|
3
|
Xiao Z, Zhao Z, Jiang B, Chen J. Enhancing enzyme immobilization: Fabrication of biosilica-based organic-inorganic composite carriers for efficient covalent binding of D-allulose 3-epimerase. Int J Biol Macromol 2024; 265:130980. [PMID: 38508569 DOI: 10.1016/j.ijbiomac.2024.130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
D-allulose, an ideal low-calorie sweetener, is primarily produced through the isomerization of d-fructose using D-allulose 3-epimerase (DAE; EC 5.1.3.30). Addressing the gap in available immobilized DAE enzymes for scalable commercial D-allulose production, three core-shell structured organic-inorganic composite silica-based carriers were designed for efficient covalent immobilization of DAE. Natural inorganic diatomite was used as the core, while 3-aminopropyltriethoxysilane (APTES), polyethyleneimine (PEI), and chitosan organic layers were coated as the shells, respectively. These tailored carriers successfully formed robust covalent bonds with DAE enzyme conjugates, cross-linked via glutaraldehyde, and demonstrated enzyme activities of 372 U/g, 1198 U/g, and 381 U/g, respectively. These immobilized enzymes exhibited an expanded pH tolerance and improved thermal stability compared to free DAE. Particularly, the modified diatomite with PEI exhibited a higher density of binding sites than the other carriers and the PEI-coated immobilized DAE enzyme retained 70.4 % of its relative enzyme activity after ten cycles of reuse. This study provides a promising method for DAE immobilization, underscoring the potential of using biosilica-based organic-inorganic composite carriers for the development of robust enzyme systems, thereby advancing the production of value-added food ingredients like D-allulose.
Collapse
Affiliation(s)
- Ziqun Xiao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zishen Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Zhang G, An Y, Zabed HM, Yun J, Parvez A, Zhao M, Zhang C, Ravikumar Y, Li J, Qi X. Rewiring Bacillus subtilis and bioprocess optimization for oxidoreductive reaction-mediated biosynthesis of D-tagatose. BIORESOURCE TECHNOLOGY 2023; 389:129843. [PMID: 37820967 DOI: 10.1016/j.biortech.2023.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
D-tagatose holds significant importance as a functional monosaccharide with diverse applications in food, medicine, and other fields. This study aimed to explore the oxidoreductive pathway for D-tagatose production, surpassing the contemporary isomerization-mediated biosynthesis approach in order to enhance the thermodynamic equilibrium of the reactions. Initially, a novel galactitol dehydrogenase was discovered through biochemical and bioinformatics analyses. By co-expressing the galactitol dehydrogenase and xylose reductase, the oxidoreductive pathway for D-tagatose synthesis was successfully established in Bacillus subtilis. Subsequently, pathway fine-tuning was achieved via promoter regulation and dehydrogenase-mediated cofactor regeneration, resulting in 6.75-fold higher D-tagatose compared to that produced by the strain containing the unmodified promoter. Finally, optimization of fermentation conditions and medium composition produced 39.57 g/L D-tagatose in a fed-batch experiment, with a productivity of 0.33 g/L/h and a yield of 0.55 mol/mol D-galactose. These findings highlight the potential of the constructed redox pathway as an effective approach for D-tagatose production.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Amreesh Parvez
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, RP, South Africa
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|