1
|
Kaur H, Goyal D. Lignin extraction from lignocellulosic biomass and its valorization to therapeutic phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123334. [PMID: 39550950 DOI: 10.1016/j.jenvman.2024.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Lignocellulosic biomass is a sustainable alternative to finite petroleum resources, with lignin emerging as a major component of biomass for producing circular economy products. Maximizing extraction and valorization of lignin to platform chemicals, biofuels, and bioactive compounds is crucial. Unlocking lignin's full potential lies in exploring the therapeutic properties of lignin-derived phenolics, which can definitely boost the economic viability of integrated biorefineries. This review provides a broad vision of lignin valorization stages, covering various techniques of its extraction from lignocellulosic biomass with high yield and purity and its further depolymerization to phenolics. Therapeutic potential of lignin-derived phenols as antioxidants, antimicrobials, anti-inflammatory, and anticancer agents is comprehensively discussed. Lignin, with high phenolic hydroxyl content up to 97% purity, can be extracted using deep eutectic solvents (DES) and organosolv processes. Oxidative and reductive catalytic depolymerization methods efficiently break down lignin into valuable phenolic compounds like alkyl phenolics and vanillin, even at mild temperatures, making them a preferred choice for lignin valorization. Potential of lignin derived phenolics as versatile bioactive compounds with health promoting benefits is highlighted. Phenolics such as vanillin, ferulic acid, and syringic acid have demonstrated the ability to modulate cellular pathways involved in the pathogenesis of diseases like cancer and diabetes. The interplay between high purity lignin extraction and therapeutic potential of lignin-derived phenolics unveils a new frontier in sustainable healthcare solutions.
Collapse
Affiliation(s)
- Harmeet Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
2
|
Wang B, Wang N, Duan C, Li J, Chen H, Xu J, Zeng J, Gao W, Wei W. Extraction of high-quality moso bamboo fibers by enzyme/alkali synergistic mechanism. Int J Biol Macromol 2024; 282:137230. [PMID: 39491711 DOI: 10.1016/j.ijbiomac.2024.137230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
As an emerging non-wood resource, moso bamboo has attracted extensive attention because of its short growth cycle and high holocellulose content. However, the internal structure of moso bamboo is more compact than that of wood, leading to higher chemical consumption during the pulping process, which greatly reduces the quality of the extracted fibers. Herein, an innovative pulping system including enzymes and alkali is proposed to achieve higher-quality extraction of moso bamboo fibers. Benefiting from the synergistic effects of high-temperature and alkali-resistant cellulase, xylanase, and laccase, supplemented with alkaline pulping, adequate retention and softening of moso bamboo fibers were ultimately achieved. The sample treated with an enzyme/alkali system resulted in a relative increase in fiber length of 7.19 % and a 31.26 % increase in beating efficiency over alkaline pulping. In addition, the tensile index and tearing index of the paper treated with the enzyme/alkali system reached 50.17 N·m·g-1 and 9.12 mN·m2·g-1, which were 22.52 % and 20.53 % higher than those of the alkaline pulping, respectively. This work provides new insights into the production of high-performance moso bamboo fibers and paper with low energy and alkali consumption.
Collapse
Affiliation(s)
- Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nan Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenguang Wei
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 257335, China.
| |
Collapse
|
3
|
Bian L, Zhang S, Chang T, Zhang J, Zhu X, Zhang C. Enhanced catalytic performance and pH stability of Streptomyces Laccase Y230R and its degradation of malachite green. Int J Biol Macromol 2024; 277:134108. [PMID: 39048010 DOI: 10.1016/j.ijbiomac.2024.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The escalating threat of malachite green (MG) pollution poses significant risks to ecosystems. Saturation mutation targeting Tyr230 of small laccase (SLAC) from Streptomyces coelicolor yielded Y230R, exhibiting a remarkable 104 % increase in specific activity. Notably, this mutation achieved dual enhancements in both activity and pH stability. Molecular dynamics simulation revealed higher structural stability of Y230R compared to wild-type (WT) across varying pH levels. The increased count of hydrogen bonds in Y230R compared to WT may be contribute to its stability. Y230R demonstrated superior catalytic efficiency (67.0 %) in MG decolorization, maintaining over 90 % activity after 30 min incubation in MG solution (500 mg/L), highlighting enhanced tolerance compared to WT. Molecular docking analysis attributed the differential catalytic effects on MG and ABTS to structural disparities and hydrogen bonding. Y230R stands as a promising composite mutant for future laccase engineering and industrial applications.
Collapse
Affiliation(s)
- Luyao Bian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Silu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Chang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiacheng Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Ali NS, Thakur S, Ye M, Monteil-Rivera F, Pan Y, Qin W, Yang TC. Uncovering the lignin-degrading potential of Serratia quinivorans AORB19: insights from genomic analyses and alkaline lignin degradation. BMC Microbiol 2024; 24:181. [PMID: 38789935 PMCID: PMC11127350 DOI: 10.1186/s12866-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues. RESULTS Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the β-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L). CONCLUSIONS The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri, India
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Youlian Pan
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada.
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Ottawa, ON, Canada.
- BioWise Technologies Inc, Ottawa, Canada.
| |
Collapse
|
5
|
Wang C, Jia Y, Luo J, Chen B, Pan C. Characterization of thermostable recombinant laccase F from Trametes hirsuta and its application in delignification of rice straw. BIORESOURCE TECHNOLOGY 2024; 395:130382. [PMID: 38281550 DOI: 10.1016/j.biortech.2024.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Chengpeng Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingyi Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; Jiande Forestry Bureau, Hangzhou 311699, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|